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Abstract—The drastic growth of mobile traffic greatly chal-
lenges the capacity of mobile infrastructures. Dense deployment
of low-power small cells helps alleviate the congestion in the
radio access network, yet it also introduces large complexity for
network management. Software-defined radio access network has
been proposed to tackle the added complexity. However, existing
software-defined solutions rely on a fully centralized control plane
to make decisions for the whole network, which greatly limits the
scalability and responsiveness of the control plane. In this paper,
we propose a hierarchical software-defined radio access network
architecture. The proposed architecture leverages the hierarchical
structure of radio access networks, deploying additional local
controllers near the network edge. Utilizing the intrinsic locality
in radio access networks, it offloads control tasks from the
central controller to local controllers with limited overhead
introduced. Under the architecture, a distributed optimization
framework is proposed, and a typical optimization problem is
studied to illustrate the effectiveness of the proposed architecture
and framework. Both analysis and experiments validate that the
proposed architecture and framework can improve the network
objective during the optimization, meanwhile balancing load and
improving scalability and responsiveness.

Keywords—Mobile 5G HetNets, radio access network, software-
defined networking, distributed optimization

I. INTRODUCTION

Mobile traffic has undergone drastic growth in the last decade,
owing to the advances of wireless broadband technologies
and the wide spread of smart devices. Such growth greatly
challenges the capacity of the current cellular infrastructure.
A major technology invented to tackle this growth is the
heterogeneous cellular networks (HetNets), which introduce
densely-deployed low-power small base stations (SBSs) to
reduce interference and increase system capacity.

The dense deployment of SBSs brings new challenges to
cellular radio access networks (RANs). First, large signaling
and management overhead has been brought about by the
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heterogeneous location, channel, power and backhaul charac-
teristics of base stations (BSs). Second, interference manage-
ment becomes more complex due to more coupled resource
allocation among neighboring macro BSs (MBSs) and SBSs. If
not properly managed, such interference could greatly impact
the throughput of users, especially users served by SBSs.

Software-defined RAN (SDRAN) is a recently proposed
concept to tackle these issues [?]. SDRAN decouples the
control plane and the data plane in the RAN, concentrating
control decisions to the control plane. In common SDRAN
architectures, a central controller aggregates information from
the entire network, and globally makes decisions for every data
plane element. This approach avoids the decisional overhead
at data plane elements, and offers the opportunity for flexible
and coordinated management in the entire RAN.

However, such benefits do not come without a cost. A major
concern is the control plane scalability. In a RAN, data plane
elements are geographically distributed over a large area. This
leads to high backhaul latency from the central controller. On
the other hand, the number of end-users in a RAN can be
huge. The central controller would incur large computation
and communication overhead if per-user decisions are to be
made. Also, resource allocation and user management typically
require real-time decision making and execution due to the
frequent dynamics in RANs. The control plane needs to make
timely decisions to ensure fine-grained and in-time control.

To address these issues, we propose a Hierarchical SDRAN
(HSDRAN) architecture for 5G HetNets [?], which can realize
the flexibility and coordination of SDRAN, yet avoiding large
centralized load and high latency of a fully centralized control
plane. The proposed architecture leverages the hierarchical
structure of modern RANs, and divides the control plane into
the global controller (GC) and a set of local controllers (LCs).
Our insight is to utilize the intrinsic locality in the RAN,
i.e., each BS’s resource allocation only affects nearby BSs,
and each user only receives sufficiently strong signals from
nearby BSs. Hence each LC is able to offload many local tasks
from the GC with limited coordination incurred. HSDRAN can
thus achieve load balancing and scalability, and also improve
responsiveness by making decisions at the edge.

To better illustrate how HSDRAN achieves these goals, we
propose a distributed optimization framework for HSDRAN.
As an illustrative example of implementing distributed op-
timization in our architecture and framework, we study a
typical optimization problem of user association and downlink
resource allocation in RANs. The problem jointly optimizes
user association and downlink resource allocation, taking into

1



account bandwidth, backhaul and power constraints. We solve
it using a distributed algorithm. While the proposed problem
and algorithm resembles the existing distributed optimization
algorithms in the literature [?], [?], [?], [?], [?], [?], [?],
[?], [?], we show how to implement this algorithm in our
framework, with a properly designed task offloading scheme,
feasibility enforcement mechanism, and analysis of their stor-
age and communication overhead at each controller. Our pro-
posed method and analysis can be easily adopted to implement
the above mentioned existing algorithms in HSDRAN. Both
analysis and experiments show that the proposed architecture
and framework achieves load balancing, scalability and respon-
siveness, and can also gradually improve network objective
before convergence.

Our contributions are summarized as follows:
• We propose a novel hierarchical architecture for SDRAN

(HSDRAN), which provides flexible and coordinated con-
trol with load balancing, scalability and responsiveness.

• Based on HSDRAN, we further propose a distributed
optimization framework which features delegation-based
implementation of distributed algorithms. We illustrate its
benefits through our proposed solution and analysis of a
typical network optimization problem in HetNets.

• Both analysis and simulation experiments show that the
proposed HSDRAN achieves the desired goals.

The rest of this paper is organized as follows. Section ??
introduces related work. Section ?? presents our proposed
HSDRAN architecture. Section ?? presents the optimization
problem we study, our primal-dual solution, and its distributed
implementation in HSDRAN. Section ?? shows performance
evaluation via simulations. Section ?? concludes this paper.

II. BACKGROUND AND RELATED WORK

A. SDRAN and Hierarchical SDN

In the control plane, researches on SDRAN start from Soft-
RAN [?]. SoftRAN abstracts the RAN as a Big Base Station,
in which radio resources can be coordinated among many
BSs. V-Cell [?] proposes another abstraction, in view of
not the network operator but the user, where multiple BSs
controlled by a central controller form a no-handover zone
in which each user has the illusion that it is connected to
only one BS. RadioVisor [?] proposes to slice the RAN into
multiple slices, enabling multi-operator sharing of the RAN.
The authors formulated the multi-operator sharing problem and
gave a heuristic solution. [?] elaborates architectural insights
on how to utilize SDRAN to improve RAN energy efficiency.
[?] proposes that the combination of SDN and RAN should
also incorporate the Cloud-RAN (C-RAN) architecture, which
decouples signal processing from signal transmission. [?] gives
a comprehensive survey on existing SDRAN architectures.
All these works consider a fully centralized control plane
for SDRAN, which has scalability and responsiveness issues.
Recently, [?] proposes a two-layer SDRAN architecture that
is similar to ours. While it uses local controllers merely to
manage Device-to-Device (D2D) communications, we focus
on offering generic distributed optimization for SDRANs.

Data plane researches start earlier than control plane.
Software-defined radio (SDR) has been proposed for over a
decade [?], previously to support cognitive radio operations.
Recently, its programmability are utilized to support SDRAN.
Based on this, recent works propose more advanced technolo-
gies for SDRAN data plane. For example, OpenRadio [?] pro-
poses a programmable data plane that is tailored for SDRAN.
It provides a modular and declarative interface for program-
ming the data plane, including graph-based representations
and operator rules. PRAN [?] and VHEL [?] both propose
to virtualize signal processing for BSs, moving it to general-
purpose servers, hence enabling its programmability.

Many other researches focus on optimization and algorithm
design for SDRAN [?], [?], [?], [?]. While they optimize
different aspects of SDRAN, they do not address the intrinsic
scalability issue and overhead that come with the fully central-
ized architecture. Other problems studied include security [?],
edge caching [?], [?], green networking [?], etc.

SDN has been brought into mobile core networks. For
example, SoftCell [?] proposes an SDN architecture for mobile
core networks, which aggregates user flows at user, BS and
policy levels to improve scalability. SoftMoW [?] proposes
a recursive and reconfigurable architecture for mobile core
networks, which features network-wide optimization functions
including routing, handovers, etc. Since core networks consist
of switches and gateways rather than BSs and users, core
SDN solutions are mostly in the perspective of flows, which
is intrinsically different from in the RAN.

Scalability of SDN control plane in Wireless Local Area
Networks (WLANs) has been recently studied. For example,
Ali-Ahmad et al. [?] described using local controllers to
control a subset of BSs, and perform local optimizations of
several control tasks. Cwalinski et al. [?] deployed local agents
at wireless access points, which selectively forward packets to
the global controller. The above proposals mainly focus on of-
floading certain simple control tasks to local controllers, which
can be decided only based on local information. Our proposed
HSDRAN architecture can not only offer the same offloading
as the above, but also realize distributed optimization in a
coordinated manner.

Distributed control plane has also been explored in wired
networks. Two types of control distribution schemes have been
studied: flat distribution [?] and hierarchical distribution [?],
[?], [?]. The former deploys multiple controllers working as
peers, hence no controller has the global view of the network.
The latter has a central controller overseeing all local ones;
the central controller maintains a global view, while local
controllers utilize locality for task offloading. The difference
between our work and the above is that, in wired networks,
the impact of network locality is very limited, since each flow
can have two arbitrarily far-away end-points; yet in wireless
environments, such locality is common and has great impact on
network performance, due to the geographical distribution of
radio resources and the natural hierarchical structure of RANs.

B. Distributed Optimization in HetNets
Network optimization has been extensively studied in the
context of cellular access networks and HetNets. We focus
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Fig. 1: HSDRAN architecture overview

on distributed optimization for the sake of scalability and load
balancing, which has been studied in many works [?], [?], [?],
[?], [?], [?], [?], [?], [?]. They study network optimization
with various variables (user association, user resource allo-
cation, etc.), constraints (bandwidth, backhaul, power, etc.),
and objectives (proportional fair, max-min fair, etc.). The
optimization problem we study in Section ?? resembles the
above, but considers different sets of variables, constraints
and objectives. In fact, our proposed optimization framework
can easily implement these existing algorithms in HSDRAN,
with properly designed task offloading schemes. The novelty of
this paper lies in a proposed architecture for overhead-limited
distributed optimization, as well as a framework to implement
such optimization in the architecture.

III. HSDRAN ARCHITECTURE

A. Design Goal
We propose an architecture that achieves the following goals:
• Optimization: It should automatically optimize network

parameters based on global network states. Moreover,
it should utilize the intermediate solutions to improve
network performance before the optimization converges.

• Scalability: It should be able to control a large-scale
RAN, which spans the coverage area of multiple MBSs
and contains thousands to hundreds of thousands of users.

• Load balancing: It should balance the computational and
management load among multiple controllers, reducing
the load incurred at any single controller. In addition,
load balancing must not introduce high communication
overhead between controllers.

• Responsiveness: It should quickly respond to network
dynamics such as user movements, network failures, etc.

B. Architecture
Fig. ?? shows an overview of HSDRAN. Following the princi-
ple of SDN, HSDRAN splits the network into the control plane
and the data plane. Unlike existing SDRAN architectures,

HSDRAN features a two-layer control plane, where the upper
layer consists of a globally centralized controller (GC), and
the lower layer consists of multiple local controllers (LCs).
Global controller: The GC commonly resides in the network
core, e.g., at the Mobility Management Entity (MME) in Long-
Term Evolution (LTE). As a central point far away from the
network edge, the GC is difficult to aggregate information and
make responsive and fine-grained decisions regarding every
user. To address this issue, the GC offloads its control tasks to
the LCs, including those requiring fast response (e.g., real-time
allocation) and those that requires only local information (e.g.,
intra-MBS handovers). Meanwhile, the GC gathers aggregated
information from the LCs, and makes global and coarse-
grained decisions (e.g., network-wide power management and
long-term load balancing). This effectively reduces the com-
putation, storage and communication overhead at the GC.

An important task for the GC is to initiate network-wide
optimization. Based on network information aggregated from
LCs, the GC can set different objectives and constraints, and
distribute the optimization tasks among all LCs. The GC may
also be involved in the optimization if needed. An example of
such optimization is shown in Section ??.
Local controller: The LCs reside near the network edge.
In HSDRAN, each LC is co-located with an MBS in the
network, and controls the MBS plus all SBSs associated with
this MBS. The reason is several-fold. First, an MBS typically
has sufficient resources to host a controller. For example,
an MBS may be equipped with general-purpose servers that
can run control applications, and fiber backhaul links that
offer high bandwidth to accommodate inter-controller traffic.
Second, an MBS is closer to the network edge, as most SBSs
have direct connection to at least one MBS. Moreover, an
MBS and associated SBSs typically serve no more than several
thousands of users, which is a reasonable number of devices
to be controlled by a centralized entity.

Each LC has several types of tasks. First, it makes local
decisions regarding the local network. For example, a local
MBS–SBS handover does not need to involve the GC, and
is handled by the LC. Second, it aggregates information for
the GC, and executes high-level instructions from the GC
regarding its domain. For example, an LC reports local power
consumption to the GC, and gets instructions on power saving
if power is over-consumed in the network during the past time
period. Last but not least, the LCs cooperatively carry out
network-wide optimization based on the instructions of the
GC. Each LC stores local variables and constants, conducts
local computations, and exchanges results with each other if
necessary, as will be shown in Section ??. Task offloading
to LCs not only reduces overhead at the GC and improves
scalability, but also improves responsiveness to local dynamics.
Control channel: The control channels carry inter-controller
or inter-plane communications, which are logically separated
from the data plane network. While deploying physically out-
of-band control channels provides the best performance isola-
tion and robustness, it is very cost-inefficient due to the wide
geographical distribution of RANs. Hence it is preferred to
utilize the existing backhaul links to establish these channels.

Two types of traffic are carried in these channels. The first
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type is inter-controller communications (eastbound traffic1)
that coordinate decision making between controllers. This type
of traffic is carried on the inter-LC links and the GC–LC
links. Since the LCs reside with the MBSs which commonly
have high-speed fiber links, these links are sufficient to carry
the eastbound traffic. The other type is control primitives and
raw data transmitted between LCs and data plane elements.
Since SBSs commonly have limited backhaul, control traffic on
these links (southbound traffic) should be minimal to minimize
interference to data plane traffic. Only direct commands and
necessary information should be disseminated via these links.

IV. DISTRIBUTED OPTIMIZATION IN HSDRAN

Fig. ?? shows an overview of the optimization framework
in the proposed architecture. The Optimization Manager at
the GC initiates and supervises the optimization process. It
instructs the Optimization Modules at both GC and LCs for
coordinated optimization. The Optimization Modules carry out
the distributed optimization. They conduct local computations
and exchange results with each other during the optimization.

Many existing optimization algorithms are iterative methods
that do not guarantee feasibility until convergence [?], [?]. The
Feasibility Enforcer transforms the intermediate (possibly in-
feasible) solutions to feasible ones, via additional computation
and information exchange. This way, the network can utilize
these solutions to gradually improve the network objective
without waiting for convergence. No computation happens in
the data plane, as only the solutions are translated into control
primitives and sent to the data plane for execution.

1Note that while the first type of traffic involves upward traffic from LCs
to GCs in the proposed controller hierarchy, we still refer to such traffic
as eastbound traffic. The term northbound commonly describes the interface
between the control plane and the management plane in the SDN convention.

To illustrate the benefits of our architecture and framework,
we study a concrete optimization problem in the RAN, and im-
plement a classic algorithm of the problem in our architecture
and framework. We study joint user association and downlink
resource allocation in HetNet RANs, considering radio, back-
haul and power resource constraints. This is a typical network
optimization problem as studied in many works [?], [?], [?],
[?], [?], [?], with a different set of constraints and objective
from the above. Implementation of our proposed algorithm
(and other similar algorithms in aforementioned researches)
in fully centralized SDRANs results in low scalability, low
responsiveness, and large overhead. On the contrary, our
proposed architecture and framework well address these issues
via delegation-based task offloading.

A. System Model
The network consists of multiple MBSs, denoted by M =
{M1, . . . ,Mm}. Each MBS M ∈ M has multiple SBSs,
denoted by SM = {SM1 , . . . , SMnM

}. All SBSs are denoted by
S =

⋃
M∈M SM . All BSs are denoted by B =M∪S .

We consider several kinds of resources in the network. Radio
resources are defined in continuous time-frequency slots for
each BS, and can be shared among BSs with frequency reuse.
We assume that all BSs share the same set of frequency bands,
and define A > 0 as the total radio bandwidth of all bands that
are shared among all BSs (in unit time). Each BS B ∈ B has
backhaul capacity of βB > 0 for serving user traffic. Further,
each BS B ∈ B has a renewable power source, which can
constantly provide ρnB ≥ 0 power. Each BS is also connected
to the power grid, which will provide energy if the renewable
energy is not sufficient. However, the grid power is not free-
to-use compared to local renewable power, hence an on-grid
power bound P ≥ 0 is enforced network-wide to limit the total
on-grid power used by all BSs. A BS’s power consumption
has two parts. The fixed power consumption of BS B ∈ B is
ρfB ≥ 0. The dynamic power consumption is defined by power
slope ρtB > 0, which is the power consumed for transmitting
unit bandwidth of radio signal with fixed transmit power. The
power consumption of BS B on the grid is thus defined as

ρB =
[
ρfB + ρtB · aB − ρnB

]+
, (1)

where [·]+ denotes the projection onto non-negative real num-
bers, and aB is the total bandwidth used by BS B. The
network-wide power bound is expressed as follows∑

B∈B
ρB ≤ P. (2)

We assume that P >
∑
B∈B [ρfB − ρnB ]+, meaning that the

on-grid power is sufficient to cover some radio transmission
in addition to all fixed part consumptions of BSs.

A set of users exist in the network, denoted by U =
{U1, . . . , UK}. Each user receives signals from several BSs,
including both MBS and SBS. To avoid strong interference
from MBS on users served by SBS, modern HetNets employs
almost blank subframes (ABSs), where some subframes are
left blank by the MBS for transmissions from/to SBSs. Denote
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PB,U as the power received from BS B at user U . For each
user U and BS B, the signal-to-interference-and-noise ratio
(SINR) during non-ABS is

SINR+
B,U =

PB,U∑
B′ 6=B PB′,U +N0

, (3)

and for user U and SBS S ∈ S, the SINR during ABS is

SINR−S,U =
PS,U∑

B′ 6=S
B′ 6=M(S)

PB′,U +N0
, (4)

where M(B) is the MBS with which SBS B is associated, or
the MBS itself if B is an MBS, and N0 is the noise power.
The SINR of an MBS during ABS is always 0 for any user.

The spectral efficiency is defined based on the Shannon
capacity, where during ABS, it is

η+
B,U = log2(1 + SINR+

B,U ), (5)

and during non-ABS, it is

η−B,U = log2(1 + SINR−B,U ). (6)

For each user, only signals with SINR above a threshold Υ
can be successfully decoded. We denote BU as the set of BSs
(namely candidate BSs) whose SINR at user U is at least Υ
during either ABS or non-ABS, and UB as the set of users
(namely candidate users) whose SINR from B is at least Υ.

TABLE I: Notations

Symbol Meaning
M Set of MBSs; |M| = m
SM Set of SBSs associated with MBS M ; |SM | = nM

S,B Set of all SBSs and all BSs
U Set of all users; |U| = K
A Total radio bandwidth shared by all BSs
βB Backhaul capacity of BS B
P Global on-grid power consumption limit
ρnB Renewable power at BS B
ρfB Fixed power consumption at BS B
ρtB Dynamic power slope for transmission at BS B
ρB On-grid power consumption of BS B
η+B,U , η

−
B,U Spectral efficiency during non-ABS and ABS

Υ Global SINR threshold
BU Set of BSs with above-threshold SINR at user U
UB Set of users with above-threshold SINR at BS B
rU Aggregate bandwidth of user U (variable)
xB,U Fraction of user U served by BS B (variable)
a+B,U , a

−
B,U Bandwidth allocation during non-ABS and ABS (variables)

αM ABS ratio at MBS M (variable)

Table ?? summarizes the notations used in this section.

B. Problem Formulation
We study joint user association and downlink resource al-
location in the RAN. In user association, we decide the
serving BS(s) for each user. We assume that each user can be
associated with multiple BSs, and define variable xB,U ∈ [0, 1]
as the fraction of user U served by BS B. In practice, xB,U
can be interpreted as the long-term association of the user, who
may be switched among multiple BSs for load balancing [?].

In resource allocation, we allocate resources in two perspec-
tives. First, we need to decide the fraction of radio resources
that are dedicated to ABSs for each MBS, and we use variable
αM ∈ [0, 1] to denote this fraction for each MBS M ∈ M.
Second, we need to allocate radio resources, for both ABSs
and non-ABSs, to each user, based on their associations. We
use variable a+

B,U ∈ [0, A] to denote the bandwidth allocated
for user U at BS B during non-ABS, and a−B,U ∈ [0, A]
to denote the bandwidth allocated during ABS. Since MBSs
cannot transmit during ABSs, we have a−M,U = 0 for any MBS
M and user U . In practice, radio resources are commonly
sliced into unit-length time slots and subcarriers. However,
variables αM , a+

B,U and a−B,U take real numbers, which can
be interpreted as the long-term allocation for SBSs and users
respectively. Finally, we use variable rU ≥ 0 to denote the
aggregate rate of user U from all candidate BSs.

The problem we study is formulated as follows:

max
∑

U∈U
wU log(rU ) (7)

s.t. rU ≤
∑
B∈BU

(η+
B,Ua

+
B,U + η−B,Ua

−
B,U ), ∀U ∈ U ; (8)∑

B∈BU

xB,U = 1, ∀U ∈ U ; (9)

a+
B,U + a−B,U ≤ A · xB,U , ∀U ∈ U , B ∈ BU ; (10)

a−M,U = 0, ∀M ∈M, U ∈ UM ; (11)∑
U∈UB

a−B,U ≤ A · ωB · αM(B), ∀B ∈ B; (12)∑
U∈UB

a+
B,U ≤ A · (1− αM(B)), ∀B ∈ B; (13)∑

U∈UB

(η+
B,Ua

+
B,U + η−B,Ua

−
B,U ) ≤ βB , ∀B ∈ B; (14)

∑
B∈B

[
ρfB + ρtB ·

∑
U∈UB

(a+
B,U + a−B,U )− ρnB

]+

≤ P; (15)

xB,U , αM ∈ [0, 1], a+
B,U , a

−
B,U ∈ [0, A], rU ∈ [0,maxSE ·A].

(16)

Explanation: The objective function (??) is the weighted
proportional fairness of user rates, where wU is the weight of
user U . In the objective function, user weights are determined
by the actual types of traffic of the users; for example, real-time
video traffic should have larger weights than static webpage
inquiries. These weights are periodically updated by each
user’s local controller based on the traffic pattern of each user
in the past period. Constraint (??) defines the user rate bounded
by the allocated radio resources (variables) and the spectral
efficiencies (constants) from all candidate BSs. Constraint (??)
states the fractional constraint of each user. Constraint (??)
bounds the allocated resources by the user association, en-
forcing that the resources allocated from BS B cannot exceed
the fraction served by this BS. Constraint (??) states the non-
transmission rule for MBS during ABS. Constraint (??) bounds
the total amount of ABS resources allocated to users by the
allocated ABS resources from the MBS, where ωB is an indica-
tor of whether BS B is an MBS (ωB = 0) or an SBS (ωB = 1).
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Constraint (??) similarly bounds the non-ABS resources to
users. Constraint (??) enforces the backhaul bound of the
aggregate user rate at each BS. Constraint (??) enforces the
network-wide on-grid power bound. Constraint (??) specifies
the range of each variable, where maxSE is the maximum
possible spectral efficiency.

For the above problem, the Slater’s condition is satisfied
since P >

∑
B∈B [ρfB − ρnB ]+, βB > 0 for ∀B ∈ B, A > 0,

and η+
B,U > 0 and η−B,U > 0 for ∀B ∈ B,∀U ∈ UB . To

see this, note that we can always set xB,U = 1/|BU | for
U ∈ U and B ∈ BU , and αM = 0.5 for M ∈ M. Resource
allocations a+

B,U and a−B,U can be made to strictly satisfy
Constraints (??), (??), (??), (??), and (??), by assigning an
arbitrarily small value ε > 0 to a+

B,U and a−B,U for any B ∈ B
and U ∈ UB , except a−B,U = 0 for MBS B ∈ M. Also, user
rates rU can be set as strictly smaller than the sum of rates
from all candidate BSs in Constraint (??). Since the problem is
maximizing a concave function subject to convex constraints,
the Slater’s condition ensures strong duality, meaning that
the primal optimal objective value equals the dual optimal
objective value. Hence we can use primal-dual algorithms like
the dual subgradient method to solve it.

C. Dual Subgradient Method
While there are many methods to solve this problem, we solve
it using the dual subgradient method (DSM) following existing
work [?], [?]. DSM is preferred in large-scale optimization due
to its possibility for distributed realization via dual decomposi-
tion, hence it will benefit from the above proposed HSDRAN
architecture. Note that primal and dual decompositions are
widely employed in wireless optimizations, which will all
benefit from HSDRAN.

Dual problem: Define z = (r,x,a+,a−,α) as the primal
variable vector, where bold symbols denote the corresponding
variable vectors. To start with, we define the subspace for
primal variables as

Π = {z ≥ 0 | (??), (??), (??)}. (17)

For the other constraints, we associate dual variables γU
for (??), σB,U for (??), µB for (??), νB for (??), λB for (??),
and δ for (??). Define p = (γ,σ,µ,ν,λ, δ) as the dual
variable vector, the dual subspace is defined as {p ≥ 0}.

The Lagrangian of the primal problem is as follows

L(z,p) =
∑

U∈U
wU log(rU )− pTg(z) (18)

=
∑

U∈U
wU log(rU )

−
∑

U∈U
γU

(
rU −

∑
B∈BU

(
η+
B,Ua

+
B,U + η−B,Ua

−
B,U

))
−
∑

U∈U

∑
B∈BU

σB,U

(
a+
B,U + a−B,U −A · xB,U

)
−
∑

B∈B
µB

(∑
U∈UB

a−B,U −A · ωB · αM(B)

)
−
∑

B∈B
νB

(∑
U∈UB

a+
B,U −A · (1− αM(B))

)
−
∑

B∈B
λB

(∑
U∈UB

(η+
B,Ua

+
B,U + η−B,Ua

−
B,U )− βB

)

− δ

∑
B∈B

[
ρfB + ρtB ·

∑
U∈UB

(a+
B,U + a−B,U )− ρnB

]+

− P

 ,

where g(·) denotes the vector of all primal constraint functions
except Constraints (??), (??) and (??). The dual problem is

minp≥0D(p), (19)

where
D(p) = maxz∈Π L(z,p). (20)

Given the dual problem, for any p ≥ 0, the subgradi-
ents of D(p) consists of g(z) for any z ∈ Π such that
L(z,p) = D(p), as observed in [?]. In other words, the set
of subgradients of the dual function (??) is given by the set
of primal constraint function values at any primal solution in
Π that achieves the maximum of the dual function. Hence we
can utilize this simple subgradient structure in our DSM.
Dual subgradient method: DSM is an iterative method that
updates the primal and dual solutions in each iteration, until
convergence. Initially, the primal variables are initialized to
some value in Π, and the dual variables are initialized to 0.
We can always use an all-0 solution as the initial primal point,
though other initial points, such as evenly distributed user
association and resource allocation among all entities, will also
work with little impact on performance. Then, in each iteration
i, the algorithm conducts the following two steps:
Primal update: The primal variables in the i-th iteration (de-
noted by z(i)) are obtained by solving the following problem

z(i) = arg maxz∈Π L(z,p(i−1)). (21)

Dual update: The dual variables in the i-th iteration (denoted
by p(i)) are updated as

p(i) = [p(i−1) + θig(z(i))]+, (22)

where θi is the step size for the i-th iteration.
Remark 4.1: Based on classic convergence results of the

subgradient method, DSM converges to within a given error
bound of the optimal solution when constant step size or step
length is used, and to the optimal when diminishing step sizes
are used [?]. This is not affected by the specific implemen-
tation of the algorithm, for example, the decomposition-based
implementation proposed below.

D. Distributed Algorithm via Dual Decomposition
DSM features dual decomposition-based distributed implemen-
tation of each iteration. In particular, each primal update or
dual update step is decomposed into per-user update, per-BS
update, and per user-BS pair update.

1) Primal Update Decomposition: Recall that the primal up-
date step is to obtain the primal variable values that maximize
the Lagrangian function in (??). Define xU = (xB,U |B ∈
BU ) to be the vector of association variables for user U ,
and aB = (a+

B,U , a
−
B,U |U ∈ UB) to be the vector of

all user allocation variables associated with BS B, for both
ABSs and non-ABSs. Also define R = [0,maxSE · A],
XU = {xU ∈ [0, 1]|xU | |

∑
B∈BU

xB,U = 1}, AB =

6



maxz∈Π L(z,p(i− 1)) =
∑

U∈U
maxrU∈R (wU log(rU )− γ(i−1)

U rU ) +
∑

U∈U
AmaxxU∈XU

∑
B∈BU

σ
(i−1)
B,U xB,U

+A
∑
M∈M

max
αM∈Λ

αM
∑

B∈SM∪{M}

(µ
(i−1)
B · ωB − ν(i−1)

B ) +
∑
B∈B

max
aB∈AB

( ∑
U∈UB

(
ζ
−,(i−1)
B,U a−B,U + ζ

+,(i−1)
B,U a+

B,U

)
−δ(i−1)

[
ρfB + ρtB ·

∑
U∈UB

(a+
B,U + a−B,U )− ρnB

]+)
+A|B|+

∑
B∈B

λ
(i−1)
B βB + δ(i−1)P

(23)

{aB ∈ [0, A]|aB | | if B ∈ M, a−B,U = 0 for ∀U ∈ UB}, and
Λ = [0, 1] to be the projection of subspace Π over each variable
or variable vector rU per U ∈ U , xU per U ∈ U , aB per
B ∈ B, and αM per M ∈M, respectively. The maximization
problem can be re-written as in (??), where

ζ
−,(i−1)
B,U = (γ

(i−1)
U − λ(i−1)

B )η−B,U − σ
(i−1)
B,U − µ

(i−1)
B , (24)

ζ
+,(i−1)
B,U = (γ

(i−1)
U − λ(i−1)

B )η+
B,U − σ

(i−1)
B,U − ν

(i−1)
B . (25)

Based on (??), the primal update step at iteration i can be
divided into several steps:

1) rU update: For each user U , its rate rU is updated as
r

(i)
U = min{ wU

γ
(i−1)
U

, A ·maxSE}.
2) xB,U update: Each user U picks the BS B∗ =

arg maxB{σ(i−1)
B,U }, and updates x(i)

B∗,U = 1 and x(i)
B′,U =

0 for B′ ∈ BU \ {B∗}.
3) αM update: For each MBS M , if

∑
B∈SM∪{M}(µ

(i−1)
B ·

ωB − ν(i−1)
B ) > 0, α(i)

M = 1; otherwise, α(i)
M = 0.

4) a+
B,U , a

−
B,U update: User resource allocation is by solving

the following optimization problem for each BS B ∈ B:

max
aB∈AB

(∑
U∈UB

(
ζ
−,(i−1)
B,U a−B,U + ζ

+,(i−1)
B,U a+

B,U

)
−δ(i−1)

[
ρfB + ρtB ·

∑
U∈UB

(a+
B,U + a−B,U )− ρnB

]+)
.

(26)
Note that although this involves maximization of a non-
linear function, the following greedy algorithm achieves
such maximization. For each BS B and each user U ∈
UB , both a

+,(i)
B,U and a

−,(i)
B,U are initialized to 0. First, we

find all users U ∈ UB such that ζ−,(i−1)
B,U ≥ δ(i−1)ρtB ,

and assign a
−,(i)
B,U = A. Next, we find all users U ∈ UB

such that ζ+,(i−1)
B,U ≥ δ(i−1)ρtB , and assign a

+,(i)
B,U = A.

Third, for the rest unassigned variables in aB , we do
the following steps: let a∗B = (ρnB − ρ

f
B)/ρtB be the

radio resources that can be served from the renewable
power source; if a∗B > 0, we then consecutively pick user
U− = arg maxU∈UB{ζ

−,(i−1)
B,U ≥ 0 | a−,(i)B,U = 0}, and

user U+ = arg maxU∈UB{ζ
+,(i−1)
B,U ≥ 0 | a+,(i)

B,U = 0} (for
MBSs, only U+ is considered); if ζ−,(i−1)

B,U− > ζ
+,(i−1)
B,U+

and ζ
−,(i−1)
B,U− ≥ 0, we let a−,(i)B,U− = min{A, a∗B}, and

let a∗B = a∗B − a
−,(i)
B,U− ; else if ζ−,(i−1)

B,U− ≤ ζ
+,(i−1)
B,U+ and

ζ
+,(i−1)
B,U+ ≥ 0, we let a+,(i)

B,U+ = min{A, a∗B}, and let

a∗B = a∗B − a
+,(i)
B,U+ ; continue this until a∗B = 0 or no

such user can be found.
2) Dual Update Decomposition: The dual update step can

also be divided into several steps based on (??): each user U
updates γU , each BS updates µB , νB , λB , each user–BS pair
updates σB,U , and globally the network updates δ. Detailed
steps for the i-th iteration are shown in (??)–(??). Note that γU
is updated at the user side, µB , νB , λB are updated at the BS
side, and δ is updated jointly by all BSs. σB,U update involves
both BS and user, hence can be conducted at either side based
on availability of computational and storage resources.

E. Delegation-based Implementation in HSDRAN
The above distributed algorithm assumes that all BSs, all users
and the network core would be involved in the computation
process. In practice, such cooperation is subject to control
capability and overhead constraints, and thus is not commonly
available in modern RANs. For example, user devices are
typically out of the control of the network operator; while SBSs
are controlled, they may lack either computational resources
(Remote Radio Heads in the C-RAN architecture) or network
bandwidth (wireless-backhauled SBSs). In HSDRAN, we uti-
lize only the control plane to carry out the computations, hence
avoiding overhead in the data plane, meanwhile achieving load
balancing compared to fully centralized SDRAN proposals. We
use a delegation-based scheme to achieve this goal.

In our proposed scheme, task delegation is to find a delegate
LC for each user and each BS, which essentially stores data,
carries out computation, and exchanges information on behalf
of the delegated user or BS. In particular, each MBS’s tasks
are delegated to its associated LC. Each user is delegated to
the LC at the nearest MBS. We use UDM to denote the set
of users delegated at the LC at MBS M . Similarly, each
SBS delegates all its tasks to the LC at the MBS that it is
associated with. Each LC stores the corresponding information
and optimization variables for its delegated users and BSs.
Information exchange happens only within the control plane,
between different LCs and between LCs and the GC. This
creates a logical separation between data plane user traffic
and control plane management traffic, which is beneficial for
performance isolation and guarantee.

Next we analyze the detailed storage and computation del-
egation process, and its storage and communication overhead.
Storage: The GC stores the network-wide dual variable δ, and
the network-wide power bound P . For each variable involving
only the user (rU and γU ), it is stored at the delegate LC of
the user. For each variable involving only the BS (αM , µB ,
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γ
(i)
U =

[
γ

(i−1)
U + θi

(
r

(i)
U −

∑
B∈BU

(
η+
B,Ua

+,(i)
B,U + η−B,Ua

−,(i)
B,U

))]+
(27)

σ
(i)
B,U =

[
σ

(i−1)
B,U + θi

(
a

+,(i)
B,U + a

−,(i)
B,U −A · x

(i)
B,U

)]+
(28)

µ
(i)
B =

[
µ

(i−1)
B + θi

(∑
U∈UB

a
−,(i)
B,U −A · ωB · α

(i)
M(B)

)]+
(29)

ν
(i)
B =

[
ν

(i−1)
B + θi

(∑
U∈UB

a
+,(i)
B,U −A · (1− α

(i)
M(B))

)]+
(30)

λ
(i)
B =

[
λ

(i−1)
B + θi

(∑
U∈UB

(η+
B,Ua

+,(i)
B,U + η−B,Ua

−,(i)
B,U )− βB

)]+
(31)

δ(i) =

[
δ(i−1) + θi

(∑
B∈B

[
ρfB + ρtB ·

∑
U∈UB

(a+
B,U + a−B,U )− ρnB

]+
− P

)]+

(32)

νB and λB), it is stored at the delegate LC of the BS. Other
variables (xB,U , a+

B,U , a−B,U and σB,U ) are related to both
BS and user, which may have different delegate LCs. In the
above primal update step, since each user picks only one BS
in each iteration, xB,U should be stored at the user delegate
for consistent selection. a+

B,U and a−B,U are local resource
allocations at each BS, hence are stored at the BS delegate
to facilitate local update of all related dual variables including
µB , νB , λB . We also let σB,U be stored at the BS delegate,
merely to facilitate its local update.

Non-variable storage involves user weights wU (stored at
user delegate), BS–user spectral efficiencies η+

B,U and η−B,U
(stored at BS delegate where they are extracted), backhaul
capacities βB (stored at BS delegate), and power parame-
ters ρfB , ρ

n
B , ρ

t
B (stored at BS delegate). Other constants are

shared globally, including total bandwidth A and maximum
spectral efficiency maxSE. To sum up, each LC at MBS M
stores 3|SM | + 4 + 3

∑
B∈SM∪{M} |UB | local variables and

4|SM |+4+2
∑
B∈SM∪{M} |UB | local constants for delegated

BSs, and 2|UDM |+
∑
U∈UD

M
|BU | local variables and |UDM | local

constants for delegated users. The GC stores only one variable,
one constant power bound, and other shared information.
Communications: Communications are incurred when infor-
mation needed for a variable update is stored at other LCs or
the GC. Note that most information is stored locally, hence
only variables and constants involving both BS and user need
to be exchanged, and it only happens when a candidate BS
of a user has a different delegate from the user’s delegate.
We analyze the number of messages (one message carries one
constant or variable value) needed in each iteration:

1) rU , αM , µB , νB , λB update: all information is locally
stored at delegate LCs, hence no communications needed.

2) xB,U update: user delegate of U needs σ(i−1)
B,U from the BS

delegate if BS B ∈ BU has a different delegate from user
U . Since xB,U update is to pick one BS with maximum
σ

(i−1)
B,U , each LC only needs to transmit the largest σ(i−1)

B,U
value of all its delegated candidate BSs of user U , if any.

3) a+
B,U , a

−
B,U update: variables λ

(i−1)
B , σ

(i−1)
B,U , µ

(i−1)
B ,

ν
(i−1)
B and other power constants are local at BS delegate

of B. Delegate of B needs γ(i−1)
U for each candidate user

U , from the user delegate of U if different from delegate
of B. Variable δ(i−1) is needed from the GC.

4) γU update: user delegate of U needs the per-user rate(
η+
B,Ua

+,(i)
B,U + η−B,Ua

−,(i)
B,U

)
from each candidate BS’s

delegate. Since the update only needs the sum rate,
each LC at MBS M transmits the aggregated rate∑
B∈SM∪{M}

(
η+
B,Ua

+,(i)
B,U + η−B,Ua

−,(i)
B,U

)
of all candi-

date BSs of U within its control, to delegate of U .
5) σB,U update: BS delegate of B needs x

(i)
B,U from the

user delegate of U . Note that in the x update, only one
BS is selected per-iteration for each user. Hence only the
selected BS needs to be aware of the selection, and each
LC sends 1 message per delegated user.

6) δ update: the GC only needs the aggregate power con-
sumption from each LC, hence each LC sends 1 message.

The summarized storage and communication overheads can
be found in Table ?? and ?? respectively.

TABLE II: Storage Overhead

LC GC
Consts 4|SM |+ 4 + 2

∑
B∈SM∪{M}

|UB | |UD
M |

Vars 3|SM |+ 4 + 3
∑

B∈SM∪{M}
|UB | 2|UD

M |+
∑

U∈UD
M
|BU |

Vars-PFT
∑

B∈SM∪{M}
|UB | 0

TABLE III: Average Communication Overhead

LC GC
Primal update 4|UD

M |+ 1 |M|
Dual update 4|UD

M |+ 1 |M|
PFT 2 2|M|

Note that most of the communications are between LCs at
nearby MBSs, as users delegated at the LC with one MBS
are very unlikely to receive strong-enough signals from other
far-away MBSs or SBSs. The GC has very little storage and
communication overhead, as it does not need to store per-
user and per-BS information. Each LC only stores information
regarding local users and BSs, and exchanges information with
only nearby LCs. Therefore our proposed method well utilizes
locality in RANs to reduce overhead.

Remark 4.2: In the above process, the delegation of users
is with no regard to the specific association of users, since
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each user–BS pair with SINR above the threshold Υ needs
to participate in the optimization process, regardless of the
final association of users. The same holds for any optimization
that involves user association as variables, e.g., even for user
association with massive Multi-Input Multi-Output (MIMO)
networks [?]. On the other hand, if an optimization problem
takes fixed user association as input, the delegation process
should consider the association of users. For example, if
a user is associated with one BS, its delegation should be
at or directly connected to this BS to facilitate information
aggregation for this user; if multiple BSs serve the same user
as in massive MIMO networks, the one with maximum signal
strength can be selected.

F. Primal Feasibility Transformation
In the above, the obtained primal solution in each iteration may
not be feasible. To better utilize these intermediate solutions,
they need to be transformed to solutions that obey the primal
constraints. We call this process primal feasibility transforma-
tion (PFT). The obvious merit of PFT is to gradually improve
network performance during the optimization process (which
can be pretty long due to the intrinsic complexity of wireless
optimization), without waiting for convergence.

Since the primal constraint set is convex, many convex
optimization methods can be used for PFT. However, we seek
for a distributed method that does not add much overhead
to the above iterative method. We propose the following 2-
step PFT method: first, we use the averaging scheme in [?] to
obtain an approximate feasible solution, whose total feasibility
violation is bounded as shown in [?]; then, we use linear
scaling to further transform it to a feasible solution.

Specifically, consider the PFT conducted after iteration i.
We first obtain the average of each primal variable over the
first i iterations. Denote the average using vector ẑ(i), we have

ẑ(i) =
1

i

∑i

j=0
z(j), (33)

where z(0) is the initial point.
Since ẑ(i) still may not be feasible, we further scale the

primal variables to enforce the feasibility constraints. Observe
that all the primal constraints are linear except Constraint (??),
which is a summation of linear functions projected onto the
non-negative real number set. Also observe that variables
x̂(i) and α̂(i)’s bounds are already satisfied in Π due to the
convexity of Π, and are only used to bound the radio resource
allocations â+,(i) and â−,(i). On the other hand, the rates r̂(i)

are also determined by allocation variables â+,(i) and â−,(i).
Therefore, we only need to scale variables â+,(i) and â−,(i)
based on violation of Constraints (??), (??), (??), (??), and
(??). The scaling is per-BS based, and is shown as follows:

1) For each BS B and user U ∈ UB , if â+,(i)
B,U + â

−,(i)
B,U >

A · x̂(i)
B,U , then we multiply both â+,(i)

B,U and â−,(i)B,U by A ·
x̂

(i)
B,U/(â

+,(i)
B,U + â

−,(i)
B,U ).

2) For each SBS B, if
∑
U∈UB â

−,(i)
B,U > A · α̂(i)

M(B),

we multiply â
−,(i)
B,U for each U ∈ UB by (A ·

α̂
(i)
M(B))/(

∑
U∈UB â

−,(i)
B,U ); for MBS B, we set â−,(i)B,U = 0

for U ∈ UB .
3) For each BS B, if

∑
U∈UB â

+,(i)
B,U > A · (1 − α̂

(i)
M(B)),

we multiply â+
B,U for each U ∈ UB by (A · (1 −

α̂
(i)
M(B)))/(

∑
U∈UB â

+,(i)
B,U ).

4) For each BS B, if
∑
U∈UB (η+

B,U â
+,(i)
B,U + η−B,U â

−,(i)
B,U ) >

βB , we multiply â+
B,U and a−B,U for each U ∈ UB by

βB/(
∑
U∈UB (η+

B,U â
+,(i)
B,U + η−B,U â

−,(i)
B,U )).

5) In the global view of the network, let Pvio =∑
B∈B

[
ρfB + ρtB ·

∑
U∈UB (â

+,(i)
B,U + â

−,(i)
B,U )− ρnB

]+
−

P . If Pvio > 0, we need to scale resources. Note that
both the fixed power consumption and the part of radio
resources covered by renewable power cannot be scaled,
thus we compute the scalable power consumption per BS
as PscaleB = ρtB

∑
U∈UB (â

+,(i)
B,U + â

−,(i)
B,U ) − [ρnp − ρfp ]+.

We multiply each BS B’s total resources
(thus â+

B,U and â−B,U for ∀U ∈ UB) by(
1− Pscale

B

(ρtB
∑

U∈UB
(â

+,(i)
B,U +â

−,(i)
B,U ))

· Pvio∑
B∈B Pscale

B

)
, which

enforces the total power constraint.
After the above, the obtained resource allocations a+ and

a− satisfy Constraints (??), (??), (??), (??), and (??). The rate
of each user U ∈ U is then re-computed as

r̂
(i)
U =

∑
B∈BU

(η+
B,U â

+,(i)
B,U + η−B,U â

−,(i)
B,U ). (34)

The obtained solution ẑ(i) is now primal feasible.
Storage: Additional

∑
B∈SM∪{M} |UB | variables at each LC,

as shown below.
Communications: The averaging process does not involve
communications. The scaling process mostly uses local infor-
mation stored at each BS delegate, except x̂(i)

B,U needed from
each user delegate in step 1, and the ratio Pvio/

∑
B∈B PscaleB

from the GC in step 5. Since the variables x(i)
B,U are exchanged

per-iteration for dual update, each BS delegate can keep a
copy of their average values, adding

∑
B∈SM∪{M} |UB | to the

storage of each LC while eliminating the communications of
another round of x variables. Hence per iteration, each LC
only aggregates total scalable power for all delegated BSs,
and sends it to the GC; the GC then broadcasts the ratio
Pvio/

∑
B∈B PscaleB to all LCs. The communication overhead

at each LC is 2 messages (1 input and 1 output), and that at
the GC is 2|M| messages.

Since the dual subgradient method is not a descent method,
the current feasible solution may be worse than the best
feasible solution ever found. Hence the GC records the best
feasible solution, and instructs the LCs to execute it until
improved in the future. This adds a copy of local primal
variables of the best solution at each controller, and another
2 messages between each LC and the GC, one for reporting
aggregated objective value, another for informing the better
solution between current and previous best.

Remark 4.3: The above PFT does not affect the conver-
gence of the optimization. Moreover, as proved in [?], if
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the optimization converges to the optimal solution, so does
the averaging sequence. Since linear scaling does not affect
convergence, the primal solution after PFT also converges to
the optimal. The pros of using PFT is to improve average
network objective by utilizing intermediate solutions. Yet the
cost is the additional overhead, for example, the additional run-
ning time per iteration, and the extra storage/communication
overhead on each controller. In this sense, a PFT method
should have low complexity in order not to add non-negligible
overhead to the optimization. For example, the above PFT
method runs in linear time, uses linear space, and adds minimal
communication overhead per controller.

Remark 4.4: While we have studied a specific optimization
problem in RAN as an illustrative example, the same archi-
tecture and technique can be applied to dealing with various
optimization problems and methods in the RAN. Specifically,
implementing distributed optimization in HSDRAN essentially
involves three steps: 1) finding a distributed/decomposition-
based algorithm, 2) defining computation delegation to local
controllers, and 3) finding a PFT method and also define its
delegation scheme. Many methods can be used for step 1,
including dual subgradient method, ADMM [?], etc. In step
2, an efficient computation delegation scheme should follow
the principle so as to minimize the communication overhead
between controllers, and can be analytically derived from
the optimization method found in step 2. The PFT step is
optional, and is only useful when the method in step 1 does
not guarantee primal feasibility during iterations.

Remark 4.5: In the above optimization, we assume the
RAN is operated by a single service provider. In a multi-
operator network [?], each operator may have a different set
of network objective and constraints, and network resources
are dynamically shared among different operators. Our archi-
tecture and optimization framework can be used orthogonally
with network slicing techniques such as RadioVisor [?]. In
this case, each operator initiates its own HSDRAN control
plane, with both the GC and the LCs in its own allocated
network slice. The global network slice manager, which has a
higher hierarchy than the operators’ GCs, will make dynamic
radio resource allocation for each operator. This allocation will
then provide the available radio resources to each operator as
input to our HSDRAN optimization framework. Modeling and
coordinating multi-operator competition is a different problem
than the one we tackle, and is among our future research
directions.

V. PERFORMANCE EVALUATION

A. Experiment Settings
We implemented our proposed optimization under both central-
ized SDRAN and HSDRAN using Matlab, and compared their
overhead. General default experiment parameters are listed in
Table ??. Parameters marked as “varying” are varied in the
experiments. Fig. ?? shows an example of the topology. 3
MBSs are deployed by default, as shown by MBS 1–3 in the
figure, each with 4 randomly deployed SBSs. When increasing
MBSs, each MBS is added in order of 1–7; MBSs excessing
7 are added in the same manner, i.e., in clockwise sense

MBS 1

MBS 2

MBS 3

MBS 4

MBS 5

MBS 6

MBS 7

MBS

SBS

Fig. 3: Experiment topology where MBSs 1–3 are by default,
and MBSs 4–7 and beyond are added in some experiments.
SBSs are randomly deployed within each MBS.

around inner MBSs. We considered two types of users: normal
users that are uniformly distributed in the simulated area, and
clustered users that are within 40m of an arbitrary SBS.

TABLE IV: General Experiment Parameters

# MBSs 3 (varying)
# SBSs per MBS 4 (varying)
Inter-site distance [?] 500 m
User density [?] 400 /km2 (varying)
Clustered user ratio [?] 2/3
Total radio bandwidth (A) [?] 10 Mbps
Network-wide power bound (P) 400 Watts (varying)
Noise [?] −174 dBm/Hz
Minimum SINR (Υ) −10 dB (varying)

Default wireless, backhaul and power parameters are shown
in Table ??. In the experiments, we varied different param-
eters. Each experiment ran the iterative algorithm for 10000
iterations, with an initial point that distributes radio resources
evenly among users. Step size of 0.0007 is empirically chosen.
In each iteration, we utilized the PFT in Section ?? to obtain
a feasible solution, executed it if better than the current, and
recorded the average objective throughout the optimization. We
ran each experiment for 20 times under the same setting and
took the average. Experiments were run on a Macbook Air
with Intel Core i7 1.7GHz CPU and 8GB memory.

TABLE V: Wireless, Backhaul and Power Parameters for BSs

MBS SBS
Path loss (d in km) [?] 37.6 log10(d) + 128.1 36.7 log10(d) + 140.7
Transmit power [?] 46 dBm 30 dBm
Backhaul [?] 2000 Mbps 200 Mbps
Fixed power cons. [?] 780 Watts 13.6 Watts
Trans. power slope [?] 18.711 Watts/MHz 0.4 Watts/MHz
Renew. power source [?] 696 Watts 15.66 Watts
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Fig. 4: Network objectives with varying user densities, MBSs, SBSs per MBS and total power bounds.
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Fig. 5: Average controller storage overhead with varying user densities, MBSs, SBSs per MBS and minimum SINR.
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Fig. 6: Average controller communication overhead with varying user densities, MBSs, SBSs per MBS and minimum SINR.

B. Experiment Results

Fig. ?? shows the network objectives with varying user den-
sities, MBSs, SBSs per MBS and total power bounds. Bars
show the average objective values over all iterations. Error bars
(“I”-like lines) show the initial objective values and the final
objective values as lower and upper bounds respectively. The
change of objective values follows intuitive analysis, where
the network objective decreases when users or MBSs increase
(the latter due to decreased per-MBS power), and increases
when number of SBSs or power bound increases (both due to
more available resources). In many cases, the average network
objective is noticeably higher than the initial network objective,
for example, when user density, number of MBSs or power
bound is low, or when number of SBSs is high. We also
observe that the final network objective is noticeably higher

than the initial objective in these cases. This shows that our
proposed PFT indeed increases average network objective.

Fig. ?? shows the average per-controller storage overhead
(number of variables) with varying user densities, MBSs, SBSs
per MBS and minimum SINR requirement. We compare our
HSDRAN implementation to a fully centralized implementa-
tion where all computations are conducted at the GC. In the
network, the number of users dominates the number of BSs,
hence the storage overhead grows linearly with user density.
On the other hand, while more MBSs greatly increases storage
in the centralized implementation, it almost has no impact on
HSDRAN, which well illustrates how HSDRAN achieves load
balancing and scalability. While the number of SBSs indeed
has some impact on storage, the impact is minimal, given that
most users receive strong-enough signal from at most one SBS.
Finally, storage decreases as minimum SINR increases, due to
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that fewer BSs are in the candidate set of each user. In all
cases, the per-controller storage overhead is much lower in
HSDRAN than in the centralized implementation. Note that
we also plotted the 95% confidence intervals for the 20 times
of tests. However, the scale of the confidence intervals are too
small compared to the mean value, hence cannot be well visible
from the figures. In average, the scale of the 95% confidence
intervals are within 0.5% of the mean values.

Fig. ?? shows the per-controller communication overhead
with varying user densities, MBSs, SBSs per MBS and mini-
mum SINR requirement. No inter-controller communication is
needed in the centralized implementation. We show both the
average per-LC communications, and the communications at
the GC. In all cases, the GC incurs very little communication
overhead. LC communications increase with user density due
to more exchanged information, while GC communications
remain the same. On the other hand, more MBSs does not
always increase LCs’ communications; the LC at each MBS
only communicates with LCs at nearby MBSs, hence the
communications reach a balance point after a certain amount
of increase. This validates that HSDRAN utilizes locality to
reduce communication overhead, leading to great scalability
and load balancing advantages. GC communications increase
linearly with the number of MBSs (thus LCs), which matches
our analysis. The number of SBSs basically does not af-
fect communications, as each user typically receives strong-
enough signal from at most one SBS. With increasing SINR
threshold, LC communications go down drastically due to
less chance that a user receives signals from two MBSs
(or associated SBSs). This shows how locality is crucial in
reducing communication overhead. We also plotted the 95%
confidence intervals for LC average communication overhead;
GC communication is only dependent on the number of LCs,
hence remains the same for all the 20 runs. In average, the
scale of the 95% confidence intervals are within 3% of the
mean values.

To summarize, HSDRAN is able to balance load and reduce
overhead (e.g. storage) at each controller, avoiding single-point
bottleneck at the central controller. It utilizes network locality
to limit communication overhead incurred at each controller.
With PFT, it can also improve average network performance
compared to using the initial solution until convergence.

Remark 5.1: While HSDRAN features its distributed con-
trol plane, fully centralized (global) control applications can
still be readily deployed at the GC in HSDRAN. In fact,
by offloading locality-aware applications such as distributed
optimization, the GC can dedicate more computation power
to global applications. HSDRAN can thus be viewed as a
performance-enhancing extension to centralized SDRAN.

VI. DISCUSSIONS

Online optimization: Network dynamics happen frequently
in RANs due to user mobility, channel fluctuation, etc. While
our proposed framework is for static optimization, it can be
applied to online optimization with modifications. To respond
to network dynamics, the LCs need to aggregate real-time
network statistics from the data plane. When dynamics happen

within an LC’s control domain, they will be accounted for
in future iterations of the optimization. Using our delegation
scheme, the added storage and communication overhead can be
close to none, because only results of each iteration need to be
exchanged. In practice, the optimization may not converge due
to frequent dynamics. Applying PFT, the network can always
benefit from the optimization instead of waiting for conver-
gence. However, the current averaging-based PFT method is
not suitable for frequent network dynamics. Advanced online
optimization and PFT methods are within our future work.
Multi-layer control plane: HSDRAN has a two-layer control
plane. In the future, more complex communication models
need more layers for further scalability and load balancing.
E.g., powerful SBSs can host another layer of LCs for D2D
communications [?], vehicular communications, or wireless
sensor networks [?]. Advanced distributed optimization and
offloading techniques are in need for this architecture.
Logically centralized control plane: In traditional SDN,
scalability is achieved by the so-called logically centralized
control plane, where multiple copies of the global controller
are deployed for load balancing. However, each controller still
needs to keep a global view, hence it cannot reduce storage
and information aggregation overhead, and also incurs com-
munications between controllers. On the contrary, HSDRAN
leverages locality in RANs, letting each LC maintain only local
information, while the GC only receives and stores aggregated
information from LCs. This effectively reduces storage and
communication overhead at any controller.

VII. CONCLUSIONS

In this paper, we proposed an HSDRAN architecture that
achieves self-optimization, scalability, load balancing, and re-
sponsiveness at the same time. The architecture deploys local
controllers in additional to the global controller to offload
control tasks to the network edge. Besides local decision
making and execution of global decisions, the local controllers
also participate in globally coordinated network optimization.
We then presented a framework to implement optimization in
HSDRAN. We used a paradigmatic user association and down-
link resource allocation problem to illustrate the benefits of our
architecture and framework. The problem was solved using a
distributed dual subgradient method. Via extensive simulations,
we showed how our architecture and framework can improve
average network objective with balanced storage usage at each
controller and limited inter-controller communications.
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