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Abstract—The Internet-of-Things (IoT) has inspired numerous
new applications ever since its invention. Nevertheless, its devel-
opment and utilization have always been restricted by the limited
resources in various application scenarios. In this paper, we study
the problem of resource provisioning for real-time IoT appli-
cations, i.e., applications that process concurrent data streams
from data sources in the network. We investigate joint application
placement and data routing to support IoT applications that have
both quality-of-service and robustness requirements. We formu-
late four versions of the provisioning problem, spanning across
two important classes of real-time applications (parallelizable
and non-parallelizable), and two provisioning scenarios (single
application and multiple applications). All versions are proved
to be NP-hard. We propose fully polynomial-time approximation
schemes for three of the four versions, and a randomized algo-
rithm for the forth. Through simulation experiments, we analyze
the impact of parallelizability and robustness on the provisioning
performance, and show that our proposed algorithms can greatly
improve the quality-of-service of the IoT applications.

Keywords—IoT, QoS, robustness, placement and routing, approx-
imation algorithms

I. INTRODUCTION

Designed to connect the digital world and the real world,
the Internet-of-Things (IoT) has been recognized as one of the
enabling technologies of the next era of computing. Numerous
applications have been developed utilizing IoT functionalities,
enabling advances in a number of areas including smart cities,
smart health, connected cars, etc. It has been anticipated that
the global IoT market will exceed $250B by 2020 [1].

One common type of IoT application is real-time processing
applications, which process continuous data streams gener-
ated by IoT devices for pre-processing or analysis. These
applications commonly have more stringent quality-of-service
(QoS) requirements than traditional applications, including
delay, throughput, etc., in order to ensure on-time delivery and
analysis of real-time data and hence fast response to the users.
An example is real-time sports analysis applications [16], [26],
which analyze the status of live sports games, based on real-
time data from cameras and/or other sensors.

Unfortunately, current IoT infrastructures are not built
specifically for real-time processing applications. Current in-
frastructures use cloud computing as the underlying com-
puting support. While cloud computing offers abundant and
inexpensive computing power, it suffers from long end-to-
end delay and high bandwidth usage, which greatly affect
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the performance of real-time processing applications. This
situation is further aggravated by commonly used communi-
cation technologies in IoT, such as cellular networks and/or
low-power wide-area networks (LPWANs), which offer only
limited bandwidth for transmission.

Fog computing is one of the emerging technologies aiming
to address these issues in current IoT. With fog nodes deployed
near the IoT devices and end users, fog computing can
reduce both the propagational delay and the bandwidth usage.
However, ubiquitous fog node deployment is still unrealistic
within the near future due to cost issues. Combined with the
limited capacity of the IoT networks, this raises the problem of
resource allocation in fog-enabled IoT. In particular, an infras-
tructure needs to allocate computing and network resources to
support each application with proper QoS guarantees.

In this paper, we study this problem from a network per-
spective, extending from our previous conference version [39].
Given a real-time processing IoT application, the infrastructure
needs to decide both the fog node to host this application, and
the channels along which the application’s data streams will be
transmitted. The channels must satisfy the QoS requirement of
the application, including both the bandwidth demand of each
data source, and the delay bound of the application.

Compared to [39], we additionally consider the robustness of
data streams: how can the application survive an arbitrary net-
work failure. We propose a technique where for any failure, the
data loss incurred on each data stream is bounded by a portion
of the total data. The robustness-aware problem generalizes
the problem studied in [39]. Incorporating robustness is non-
trivial, since it changes the problem formulation, rendering the
algorithms in [39] infeasible in achieving a rigorous theoretical
bound. We propose modified algorithms that present the same
theoretical bounds. Our robustness formulation, combined with
error correction coding [10], can achieve lossless data trans-
mission and processing for applications, which is crucial in
many critical scenarios such as emergency handling.

Two application types are considered. A parallelizable ap-
plication is one that can be deployed as multiple instances,
possibly with certain data restrictions. A non-parallelizable
application is one that must be centrally implemented on one
host. We further consider two provisioning scenarios: single-
application provisioning, and multi-application provisioning.
Combining the two types with the two scenarios, we have four
versions of the provisioning problem. We formally define these
problems, and prove that they are all NP-hard. We then propose
fully polynomial-time approximation schemes (FPTASs) for
three of them, and a randomized algorithm for the last one.

Our algorithms are based on the primal-dual FPTAS for
Maximum Concurrent Flow (MCF) by Garg and Kone-
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mann [14]. However, considering both application hosting
and routing with bandwidth and delay constraints makes our
problems NP-hard, much harder than MCF which has polyno-
mial time optimal algorithms through linear programming. We
novelly combine the MCF FPTAS with an existing FPTAS for
the Delay Constrained Least Cost path (DCLC) problem [33],
with additional techniques in handling the multi-source multi-
destination nature of parallelizable applications. We use simu-
lations to evaluate our algorithms against both the theoretical
upper bound and several heuristic solutions. It is shown
that our algorithms achieve close-to-optimal performance, and
outperform the heuristics in terms of both bandwidth and delay.

Our contributions are summarized as follows:
• To the best of our knowledge, we are the first to study the

problem of IoT application provisioning with both QoS
and robustness requirements.

• We formulate four versions of the provisioning problem,
and proved all of them to be NP-hard.

• We propose FPTASs for three of the four versions, and a
randomized algorithm for the last one.

• We use extensive simulations to evaluate the performance
of our algorithms against both the theoretical bound and
several practical heuristics.

The rest of this paper is organized as follows. In Sec. II, we
introduce background and related work. In Sec. III, we present
our system model. In Sec. IV, we formally define the four
provisioning problems we study, and present their complexity
result. In Secs. V and VI, we propose our algorithms for single
application provisioning and multi-application provisioning,
respectively. In Sec. VII, we present our performance eval-
uation results. In Sec. VIII, we conclude this paper.

II. BACKGROUND AND RELATED WORK

A. Internet-of-Things and Fog Computing

While the concept of the “Internet-of-Things” can trace
back to the last century1, its power has barely been unleashed
until recently, when several enabling technologies, including
wireless networks, cloud computing, and data science, have
witnessed drastic advances. Since then, extensive efforts have
been put into IoT-related areas, including computing architec-
tures [5], communications [26], radio-frequency identification
(RFID) [7], etc. A survey on IoT can be found in [21].

Fog computing has been regarded as one of the key tech-
nologies that enable IoT [5]. Extending from cloud computing,
fog computing deploys geographically distributed fog nodes in
the edge network, providing computing power closer to both
the IoT devices and end users. Fog computing can improve the
performance and energy efficiency in many IoT applications,
including crowdsensing [3], smart cities [15], etc.

The limited resources in IoT and fog have urged efforts
on new resource allocation methods. Zeng et al. [41] studied
task scheduling and data placement to minimize I/O time,
computing time and transmission delay in fog platforms.
Many have studied workload offloading in edge/fog-cloud

1The term dates back to a talk by Kevin Ashton in 1999 [21].

systems with different objectives, including power consump-
tion [11], [29], delay minimization [11], [25], [27], quality-
of-experience [29], etc. However, most of these do not con-
sider the complex structure and limited capacity of the edge
network; while Deng et al. [11] indeed considered network
bandwidth constraints, they assumed that the transmission of
each application’s data will not interfere with each other, which
does not capture the sharing nature of the IoT networks, and
hence does not apply in many cases. Due to lack of existing
work on network resource allocation in fog-enabled IoT, we
study application provisioning from a network perspective,
where we aim to guarantee the QoS of applications in terms
of both transmission delay and bandwidth.

B. Network Service Provisioning

Stepping out of the IoT and fog computing domain, some
related resource allocation problems have also been studied
in different contexts, such as virtual network/infrastructure
embedding (VNE/VIE) [8] and service function chaining
(SFC) [20], [24]. The VNE/VIE problems aim to find an
embedding of a virtual service topology onto the physical
topology, which respects resource capacities in the substrate.
The difference is that VIE allows virtual node consolidation
while VNE does not. While these two problems can be viewed
as a generalization of ours, they are harder to solve. To the
best of our knowledge, there has yet been any non-trivial
approximation ratio for VNE/VIE on general graphs. Assump-
tions on topologies and/or service models help in providing
performance bounds [44], but are commonly too restrictive to
handle the complex structures of the IoT networks.

SFC is another special case of the general VNE/VIE prob-
lems, where the virtual topology is restricted to line graphs.
In this case, certain approximation bounds can be obtained, as
shown by Rost et al. [24] and Kuo et al. [20]. In this paper,
we consider a different service model than SFC, where the
virtual topologies are star graphs. We also propose solutions
with non-trivial performance guarantees.

C. Robust Applications and Networks

Service robustness has long been studied in the literature.
There are two common approaches for building and/or main-
taining robust services. One is to provide fault resilience
through redundancy, i.e., provisioning redundant resources
(computing, path, bandwidth, etc.) as backup to quickly re-
cover a service when failure happens. For example, restoration-
based routing, bandwidth allocation and network embedding
have been studied in [18], [23], [30], [32]. Similar approaches
have also been used for service, application and virtual ma-
chine backups [4], [19], [36], [37], [40]. Due to the need
for redundancy, this approach commonly leads to excessively
reserved backup resources that remain idle most of the time.

The second approach is to rather leverage the fault toler-
ance of the services themselves, and to minimize either the
fault probability or the fault impact incurred on the services.
Zhang et al. [42] modeled the fault probability of a virtual
infrastructure based on the availability of all its physical
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components, and sought to minimize this probability during
the embedding. Acharya et al. [2], Zhang et al. [43] and
Yallouz et al. [34] explored bounding the impact of a failure
on the overall throughput of the system. This was termed
tunable survivability in [34]. This idea was further leveraged
in [35] and [38]. Compared to the redundancy-based approach,
this approach results in much less resource consumption, yet
providing reasonably good protection in practice. We therefore
take this approach in our paper, specifically due to the already
scarce resources in the IoT environment.

III. SYSTEM MODEL

A. Infrastructure Model
The IoT infrastructure is modeled as a directed graph G =

(V, E), where V is the node set, and E is the link set. The
node set consists of both facility nodes (servers, fog-enabled
switches/routers, etc.) and network nodes (switches/routers).
We use F ⊆ V and N ⊆ V to denote the sets of facility
and network nodes, respectively. Note that F and N may not
be disjoint, as some network nodes may also have computing
capabilities [9]. Each link e ∈ E has a capacity, denoted by
ce > 0, and a transmission delay, denoted by de > 0.

B. Application Model
An application receives continuous data from a set of data

sources, and performs joint analysis of all data. We assume
each source generates data in a constant rate, e.g., a camera
generating video footages. Given an application, we need to
both find a facility node to host it, and establish transmission
channels from each source to the host. An application may
require certain hardware resources, e.g., GPUs for efficient
video processing. Hence usually, only a subset of facility
nodes can host an application. The channels need to satisfy
at least two QoS requirements: 1) each source should receive
bandwidth that meets its data generation rate, and 2) each
channel should satisfy the delay tolerance of the application.

Formally, an IoT application is denoted by a triple, Γ =
(S,B, D), where S ⊆ V denotes the set of data sources of
Γ, B = {Bs ∈ R+ | s ∈ S} denotes the corresponding data
generation rate of each data source in S (R+ is the set of
positive real numbers), and D > 0 is the delay bound that must
be enforced for transmission from each data source. Given a
Γ, we further use FΓ ⊆ F to denote its candidate host set,
where each v ∈ FΓ satisfies the hardware requirement of Γ.

C. Basic Provisioning Model
Application provisioning involves both finding the host node

and data routing. Before defining the provisioning problems,
we first make the following definitions.

Definition 1 (Feasible path set). Given network G and an
application Γ, let v ∈ FΓ be a candidate host of Γ and s ∈ S
be a data source of Γ, the feasible path set of Γ regarding v
and s, denoted by PΓ

v,s, is defined as the subset of all (s, v)-
paths in G such that for each path p ∈ PΓ

v,s,∑
e∈p

de ≤ D. (1)

We use PΓ
v =

⋃
s∈S PΓ

v,s to denote the feasible path set from
all data sources of Γ to candidate host v, and PΓ =

⋃
v∈FΓ

PΓ
v

the feasible path set towards all candidate hosts of Γ.

Definition 2 (Bandwidth allocation). Let P be an arbitrary
set of paths in G. A bandwidth allocation of P is defined as
a mapping L : P 7→ R∗ (R∗ denotes the set of nonnegative
real numbers), where L(p) denotes the bandwidth allocated
on path p for any p ∈ P . We say that a bandwidth allocation
L is feasible, iff for any link e ∈ E ,∑

p∈P :e∈p
L(p) ≤ ce. (2)

We use b(P ) =
∑
p∈P L(p) to denote the aggregate bandwidth

of L over path set P .

We consider two types of applications. A non-parallelizable
application has no parallelism capability, hence its logic must
be centrally implemented on one facility node. Contrarily, a
parallelizable application can have its logic split over mul-
tiple instances, each processing a portion of the incoming
data. However, implementing parallelism may have certain
data splitting restrictions, such as data synchronization among
sources. An example of a parallelizable application is stateless
sensor data fusion [12], where each instance can process an
arbitrary portion of incoming data as long as the same por-
tion is received synchronously from every source. Below, we
formalize the provisioning of these two types of applications.

Definition 3 (Provisioning scheme). Given network G and an
application Γ, a provisioning scheme is defined as a triple
Π = (x, PΓ

x ,LΓ
x), where x = {xv | v ∈ F} is a decision

variable vector with xv denoting the fraction of data incoming
to an instance of Γ on candidate host v, PΓ

x ⊆ PΓ is a subset
of feasible paths of Γ towards each candidate host v ∈ F with
xv > 0, and LΓ

x is a feasible bandwidth allocation of PΓ
x . We

say that a provisioning scheme Π is feasible iff
1)
∑
v∈F xv = 1,

2) for ∀v ∈ F , if Γ is non-parallelizable, then xv ∈ {0, 1},
otherwise xv ∈ [0, 1], and

3) for ∀s ∈ S and ∀v ∈ F , the aggregate bandwidth
b(PΓ

v,s) ≥ Bs · xv , where PΓ
v,s = PΓ

x ∩ PΓ
v,s is the subset

of selected paths from s to v.

The last requirement of feasibility in Definition 3 ensures
that the same portion of data generated by all data sources are
received at the same instance, which can be used to enforce
data synchronization for applications such as stateless sensor
fusion. For simplicity, we assume that the processing results
are consumed locally at the host(s). It is trivial to add channels
that transmit the results, and hence is omitted for simplicity.

D. Robustness Model
Robustness means the ability to provide uninterrupted ser-

vice when facing infrastructural failures. Some failures have
inevitable effects in service quality, such as failures at data
sources; others, however, can be avoided or alleviated by load
and redundancy management. In this paper, we tackle failures
that can be alleviated, including link and node failures.
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As stated before, instead of the traditional “all-or-nothing”
protection, we use a “soft” mechanism for robustness [38],
[43], which ensures that an application incurs only bounded
data loss due to any single failure in the network. Specifically,
each source s ∈ S has a reliability parameter rs ∈ (0, 1], which
denotes the tolerable data loss ratio for correct processing of
its generated data. The idea is to ensure that the load is properly
distributed such that the application incurs no more than rs ·Bs
data loss from s due to any single failure. We call this approach
robustness through load balancing. This can be coupled with
a proper application- or network-level coding technique [10]
to achieve loss-resistance in failure scenarios.

Given the above, we can extend Definition 3 to incorporate
robustness. We start with the definition of a link-robust provi-
sioning scheme, which protects against a single link failure:

Definition 4 (Link-robust provisioning scheme). Given net-
work G and an application Γ, a link-robust provisioning
scheme is a provisioning scheme Π for Γ that satisfies: for
∀s ∈ S and ∀e ∈ E ,

∑
p∈PΓ

x :e∈p L(p) ≤ rs ·Bs.

The idea behind Definition 5 is that the data loss for data
source s due to a single link failure is essentially bounded by
the amount of data transmitted on all paths through link e.
Similarly, we can define a node-robust provisioning scheme:

Definition 5 (Node-robust provisioning scheme). Given net-
work G and an application Γ, a node-robust provisioning
scheme is a provisioning scheme Π for Γ that satisfies: for
∀s ∈ S and ∀u ∈ V \ {s},

∑
p∈PΓ

x :u∈p L(p) ≤ rs ·Bs.

Each source node s is excluded from protection, as failure of
the source node will cause full blockage of data transmission,
and hence cannot be alleviated through load balancing.

Before diving into the concrete problem definition, we
want to highlight the different robustness capabilities of the
two types of applications. Note that node-robustness is a
generalization of link-robustness. For a non-parallelizable ap-
plication, only link-robustness can be achieved, because its
logic must centrally implemented, which becomes a single
point of failure. In this case, protection over node failures
can only be implemented through redundancy rather than
load balancing, and hence is out of the scope of this paper.
Meanwhile, a parallelizable application can achieve node-
robustness, since it can balance load across instances. In the
rest of this paper, we use the term “robust” to denote node-
robustness for parallelizable applications, and link-robustness
for non-parallelizable applications, depending on the context.
Note that rs = 1 means no protection for data source s, hence
the problem we study generalizes the problem studied in [39].

E. Notations
We define some notations to facilitate illustration. V = |V|

is the number of nodes. E = |E| is the number of links. FΓ =
|FΓ| is the number of candidate hosts for application Γ, and
F = |F| is the total number of facility nodes. SΓ = |SΓ| is the
number of data sources for application Γ, and S =

∑
Γ∈Γ SΓ

is the total number of data sources for a set of applications Γ.
Notations used in our model are summarized in Table I.

TABLE I: Notations

Symbol Meaning

G = (V, E) IoT infrastructure with nodes and links
F ,N ⊆ V Fog nodes, network nodes
ce, de Link capacity, link delay
Γ = (S,B, D) Request: data sources, rates and delay bound
Bs ∈ B Data rate of data source s ∈ S
FΓ ⊆ F Candidate host node set of Γ
PΓ

v,s,PΓ
v ,PΓ Feasible path sets: v ∈ FΓ, s ∈ S

L : P 7→ R∗ Bandwidth allocation over any path set P
b(P ) Aggregate bandwidth of L over path set P
Π = (x, PΓ

x ,LΓ
x) Provisioning scheme: hosts, paths, allocation

xv ∈ x Fraction of application hosted on v ∈ FΓ

rs Tolerable data loss ratio of source s ∈ S
λ

Traffic scaling ratio (objective value), to be
defined in Sec. IV

IV. PROBLEM STATEMENT AND COMPLEXITY ANALYSIS

We separately consider provisioning parallelizable and non-
parallelizable applications. As stated before, we consider two
scenarios. First, we consider provisioning a single application,
which can be applied, e.g., when processing online requests.
Second, we consider the joint provisioning of multiple ap-
plications simultaneously. This can be useful both for batch
provisioning of queued requests, and for provisioning multiple
inter-related applications. Combining these, we arrive at four
versions of the problem, which are formally defined below.

Definition 6 (SAP). Given network G and an application Γ,
the Single-Application Provisioning (SAP) problem is to find
a feasible and robust provisioning scheme Π for Γ.

Its optimization version, named O-SAP, is to find a robust
provisioning scheme Π, such that for every data source s ∈ S,
its aggregate bandwidth satisfies b(PΓ

x,s) ≥ λ · Bs, and the
traffic scaling ratio λ is maximized.

We use P-SAP/PO-SAP to denote the corresponding problem
with a parallelizable application and node-robustness, and N-
SAP/NO-SAP to denote the corresponding problem with a non-
parallelizable application and link-robustness.

Definition 7 (MAP). Given network G and an application
set Γ = {Γ1, . . . ,ΓK}, the Multi-Application Provisioning
(MAP) problem is to find a set of feasible and robust provision-
ing schemes Π = {Π1, . . . ,ΠK}, where Πk = (xk, Pk,Lk) is
the provisioning scheme for Γk for k = 1, . . . ,K, such that
the shared capacity constraint is satisfied for any link e ∈ E:∑K

k=1

∑
p∈Pk

Lk(p) ≤ ce.

Its optimization version, named O-MAP, is to find a set of
robust provisioning schemes Π for Γ, such that the minimum
traffic scaling ratio λ of all applications, as defined in Defini-
tion 6, is maximized.

We use Pk,s = Pk ∩ PΓk
xk,s

to denote the subset of selected
paths for data source s of application Γk.

We use P-MAP/PO-MAP to denote the corresponding prob-
lem with parallelizable applications and node-robustness, and
N-MAP/NO-MAP to denote the corresponding problem with
non-parallelizable applications and link-robustness.
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Note that in the definitions, the inverse of the traffic scaling
ratio λ is the congestion ratio χ = 1

λ , i.e., the maximum load
over capacity on any link. Maximizing λ is thus equivalent to
minimizing congestion in the network. We choose to maximize
λ for simplicity of our illustration. A traffic scaling ratio λ ≥ 1
(congestion ratio χ ≤ 1) means that the corresponding decision
problem instance is feasible, and vice versa.
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Fig. 1: SAP problem example with 2 data sources (a and b)
and 2 candidate host nodes (X and Y). The values beside links
are (capacity (Mbps), delay (ms)).

We show an example of SAP in Fig. 1 with 2 data sources
(a and b), and 6 network nodes (A–F) and 2 facility nodes (X
and Y). If the application is parallelizable, the goal here is to
allocate demands from a and b to the facility nodes X and Y,
such that each facility node processes the same amount of data
from both a and b. If the application is non-parallelizable, the
goal is to select either X or Y to process all data. We then need
to route traffic to X and/or Y through one or more paths for
each source. In doing so, we try to minimize congestion, i.e., to
maximize the traffic scaling ratio of both sources, meanwhile
ensuring that all paths satisfy the delay bound 100 ms.

Theorem 1. All problems defined above are NP-hard.

Proof: Since SAP problems are special cases of the
corresponding MAP problems, it suffices to prove that P-SAP
and N-SAP are NP-hard. Consider a special case of P-SAP or
N-SAP where Γ has one data source s, one candidate host t,
and no protection (rs = 1). In this case, SAP becomes finding
a set of (s, t)-paths and a bandwidth allocation that satisfy
the bandwidth demand Bs and the delay bound D. This turns
out to be the Multi-Path routing with Bandwidth and Delay
constraints (MPBD) problem, which is NP-hard [22]. Hence
SAP is NP-hard, and the NP-hardness of the rest follows.

Solution overview. Due to the NP-hardness, we seek to
approximate the optimal solutions. By definition, PO-MAP
and NO-MAP are generalizations of PO-SAP and NO-SAP
respectively. Below, we first show through a theorem that NO-
SAP admits an FPTAS following a trivial extension of the
FPTAS for an established flow problem. Both PO-SAP and
PO-MAP admit another FPTAS, which, however, is a non-
trivial extension of that FPTAS and requires involved steps in
handling application hosting. We have yet been able to find
an FPTAS for the most difficult NO-MAP problem due to
the combinatorial hosting decisions, and hence we propose a
randomized algorithm based on the FPTAS for PO-MAP. The
existence of an FPTAS for NO-MAP remains open.

Algorithm 1: Approximation Algorithm ANO-SAP

Input: Network G, application Γ
Output: Traffic scaling ratio λ, provisioning scheme Π

1 λ← 0, x← 0;
2 for each candidate host v ∈ FΓ do
3 (λv, P

Γ
v ,LΓ

v )← ADR(G,Γ, v);
4 if λv > λ then
5 λ← λv , x← 0, xv ← 1;
6 Π← (x, PΓ

v ,LΓ
v );

7 end
8 end
9 return (λ,Π).

V. SINGLE-APPLICATION PROVISIONING

We start with provisioning one application at a time. Due to
the two application types, we have two versions of the problem
(PO-SAP and NO-SAP). In this section, we propose an FPTAS
for NO-SAP. We leave PO-SAP to Sec. VI, where we propose
an FPTAS for both PO-SAP and PO-MAP. In the rest of this
section, we omit the term “non-parallelizable”.

Our algorithm to NO-SAP is based on the decomposition
of NO-SAP into two subproblems: Host Designation (HD)
that decides the host node of application Γ, and Data Routing
(DR) that decides the routing paths and bandwidth from
each data source to the host. For simplicity, we extend this
decomposition method throughout the rest of this paper, with
HD denoting determination of the decision vector x, and DR
denoting the routing process, i.e., determining PΓ

x and LΓ
x. For

the NO-SAP problem, the relationship between this problem
and its DR subproblem is stated in the following lemma.

Lemma 1. If the DR subproblem admits a polynomial-time
a-approximation algorithm, so does NO-SAP.

Proof: We construct an a-approximation algorithm to NO-
SAP (ANO-SAP) from an a-approximation algorithm to DR
(ADR), shown in Algorithm 1. The algorithm enumerates all
candidate hosts to find the best one, using the a-approximation
ADR. To prove Algorithm 1 is an a-approximation to NO-SAP,
let Π∗ = (x∗, P ∗,L∗) be an optimal solution to NO-SAP with
objective value λ∗ and x∗v∗ = 1. Then (P ∗,L∗) is indeed a
feasible solution of DR given host node v∗. Let λ∗v∗ be the
optimal DR solution with v∗, we have λ∗ ≤ λ∗v∗ . The DR
solution picked in Algorithm 1 during iteration v∗, denoted by
(PΓ
v∗ ,LΓ

v∗), has scaling ratio λv∗ ≥ aλ∗v∗ ≥ aλ∗. This leads to
λ ≥ λv∗ ≥ aλ∗. The lemma follows.

It remains to solve the DR subproblem, which is still NP-
hard due to the same argument as in the proof of Theorem 1.
Yet, the DR subproblem turns out to be a special case of
the QoS-aware and Reliable Traffic Steering (QRTS) problem
studied in [38]. Specifically, the DR subproblem is equivalent
to having a policy routing requirement that contains no service
function and having all traffic flows pointing to the same
destination node in QRTS. Combining the FPTAS proposed
in [38] with Lemma 1 leads to our final theorem for NO-SAP:

Theorem 2. NO-SAP admits an FPTAS, as shown in Algo-
rithm 1 combined with the FPTAS in [38].
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VI. MULTI-APPLICATION PROVISIONING

In this section, we study multiple applications sharing the
IoT. We first propose an FPTAS for PO-MAP that also solves
PO-SAP as a special case. Since we do not have an FPTAS
for NO-MAP, we then propose a randomized algorithm for it.

A. Problem Formulation for PO-MAP
We first formulate PO-MAP. For simplicity, we use k to

denote Γk. We use P =
⋃K
k=1 Pk to denote the set of all

feasible paths of all applications2. We then use Pks ⊆ P
to denote all feasible paths for application k’s source s. For
consistency of notation, we define variables x(k, v)

∆
= xkv as

the fraction of application k hosted on candidate host v ∈ Fk,
L(p) as the bandwidth allocation on path p ∈ P , and λ still
as the traffic scaling ratio. NO-MAP is formulated as follows:

max λ (3a)

s.t.
∑

p∈Pkv,s

L(p) ≥ Bks · λ · x(k, v), ∀k, v ∈ Fk, s; (3b)

∑
v∈Fk

x(k, v) = 1, ∀k; (3c)∑
p∈P:e∈p

L(p) ≤ ce, ∀e ∈ E ; (3d)∑
p∈Pks :u∈p\{s}

L(p) ≤ rks ·Bks , ∀k, s, u ∈ V \ {s}; (3e)

x(k, v) ∈ [0, 1],L(p), λ ≥ 0, ∀k, v ∈ Fk, p. (3f)
Explanation: Constraint (3b) couples bandwidth allocation
with the demands, host designation, and the scaling ratio.
Constraint (3c) ensures that a feasible host designation. Con-
straint (3d) enforces link capacities. Constraint (3e) enforces
node-robustness, such that the flow over each node u ∈ V\{s}
is bounded by rks ·Bks for each source s of each application k.

Program (3) seems like a Quadratic Program (QP) due to
Constraint (3b). However, with a simple transformation shown
below, it can be transformed into an equivalent Linear Program
(LP). Define new variables y(k, v) = λ · x(k, v), we have

max λ (4a)

s.t.
∑

p∈Pkv,s

L(p) ≥ Bks · y(k, v), ∀k, v ∈ Fk, s; (4b)

∑
v∈Fk

y(k, v) ≥ λ, ∀k; (4c)∑
p∈P:e∈p

L(p) ≤ ce, ∀e ∈ E ; (4d)∑
p∈Pks :u∈p

L(p) ≤ rks ·Bks , ∀k, s, u ∈ V \ {s}; (4e)

y(k, v),L(p), λ ≥ 0, ∀k, v ∈ Fk, p. (4f)
Programs (3) and (4) are clearly equivalent. However, Pro-

gram (4) may still have an exponential size due to the possibly
exponential number of feasible paths, and hence cannot be
solved directly as an LP. Hence, we next propose an FPTAS.
2W.l.o.g., we regard the same path for two applications as two different paths.

B. An FPTAS to PO-MAP

Our FPTAS to PO-MAP extends the ones to MCF reported
in [6], [13], [14]. However, PO-MAP is more difficult than
the above, due to the need for (fractional) host designation as
well as the node-robustness constraint. We first write the dual
of Program (4), where we define z(k, v, s) ≥ 0 as the dual
variable of Constraint (4b) for ∀k, v ∈ Fk, s ∈ Sk, ϕ(k) ≥ 0
as the dual variable of Constraint (4c) for ∀k, l(e) as the dual
variable of Constraint (4d) for ∀e ∈ E , and σ(k, s, u) as the
dual variable of Constraint (4e) for ∀k, s ∈ Sk, u ∈ V \ {s}:

min ∆(l, σ) =
∑
e∈E

cel(e) +

K∑
k=1

∑
s∈Sk

u6=s∑
u∈V

rks ·Bks · σ(k, s, u)

(5a)

s.t.
∑
e∈p

l(e)+
∑
w∈p

σ(k, s, w)≥z(k, v, s), ∀k, v, s, p ∈ Pkv,s;

(5b)∑
s∈Sk

Bks · z(k, v, s) ≥ ϕ(k), ∀k, v; (5c)

K∑
k=1

ϕ(k) ≥ 1; (5d)

z(k, v, s), ϕ(k), l(e) ≥ 0, ∀k, v, s, e. (5e)
Since the primal and dual are intrinsically different from the

above references, we provide our full analysis for completeness
of this paper, starting from the observations below:

Lemma 2. Constraint (5b) is binding, i.e., equality holds
instead of inequality at optimality, for at least one combination
of k, v, s, p, where k = 1 . . .K, v ∈ Fk, s ∈ Sk, p ∈ Pkv,s.
Lemma 3. Constraint (5d) is binding.

Lemma 4. For ∀k, Constraint (5c) is binding for at least one
candidate host v ∈ Fk.

Lemma 5. For ∀k,∀v ∈ Fk,∀s ∈ Sk, Constraint (5b) is
binding for at least one feasible routing path p ∈ Pkv,s.

Proof: Let ε be an arbitrarily small positive amount. If
Lemma 2 is false, Constraint (5b) is not binding for every
combination of k, v, s, p. Then we can reduce the value of
l(e) for an arbitrary e where l(e) > 0 by ε, and obtain a
feasible dual solution with a strictly smaller objective value,
contradicting our optimality assumption. If Lemma 3 is false,
then we can reduce the value of ϕ(k) for every k by ε. This will
make every Constraint (5c) unbinding. Then we can reduce
the value of z(k, v, s) for every combination of k, v, s, which
makes every Constraint (5b) to be unbinding, contradicting
Lemma 2. If Lemma 4 is false for some k, then we can
increase the value of ϕ(k) by ε, which makes Constraint (5d)
unbinding, contradicting Lemma 3. If Lemma 5 is false for
some combination of k, v, s, then we can increase the value
of z(k, v, s) by ε, which makes Constraint (5c) unbinding for
the corresponding k, contradicting Lemma 4. Therefore, we
conclude that Lemmas 2–5 are all true.

Based on Lemmas 2–5, we have the following facts.
1) At optimality, z(k, v, s) = minp∈Pkv,s{

∑
e∈p l(e) +
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∑
u∈p\{s} σ(k, s, u)}, i.e., z(k, v, s) equals the shortest

feasible routing path length in Pkv,s regarding length
functions l(·) for links and σ(k, s, ·) for nodes;

2) At optimality, ϕ(k) = minv∈Fk{
∑
s∈Sk B

k
s z(k, v, s)},

i.e., ϕ(k) equals the minimum (over all possible candidate
hosts v ∈ Fk) weighted (by Bks ) sum (over all sources
s ∈ Sk) of shortest feasible routing path lengths in Pk
regarding length functions l and σ.

Let ζk,v,s(l, σ) = min
p∈Pkv,s

{
∑
e∈p l(e) +

∑
u∈p\{s} σ(k, s, u)}

be the shortest path length in Pkv,s regarding length functions
l and σ, and ψk(l, σ) = minv∈Fk{

∑
s∈Sk B

k
s ζk,v,s(l, σ)}

be the minimum weighted sum of shortest path lengths of
all sources of k over any candidate host v. Further define
α(l, σ) =

∑K
k=1 ψk(l, σ). Then, Program (5) is equivalent

to minl,σ≥0 ∆(l, σ)/α(l, σ), i.e., finding l and σ minimizing
∆(l, σ)/α(l, σ).

Algorithm 2: Approximation Scheme APO-MAP

Input: Network G, application set Γ, tolerance ω
Output: Scaling ratio λ, decisions y = {y(k, v)}k,v ,

path sets P = {P kv,s}k,v,s, bandwidth
allocation L

1 Initialize ε = ω′ = ω
4 , γ =

(
1+ε(1+ω′)
E+(V−1)S

)1+ 1
ε(1+ω′) ,

l(e) = γ
ce

for ∀e ∈ E , σ(k, s, u) = γ
rksB

k
s

for
∀k, s, u ∈ V \ {s}, P kv,s = ∅ for ∀k, v, s, L = ∅;

2 ρ← 0;
3 while ∆(l, σ) < 1 do // phase
4 ρ← ρ+ 1;
5 for k = 1 . . .K do // iteration
6 η ← 1.0;
7 while η > 0 do // step
8 (p̃,φ, ṽ, η̃)← PrimUpdt(G,Γ, k, l, σ, ω′);
9 if η̃ > η then

10 φ← ηφ/η̃; η̃ ← η;
11 end
12 y(k, v)← y(k, v) + η̃; η ← η − η̃;
13 for s ∈ Sk do
14 P kv,s ← P kv,s ∪ {p̃s};
15 L(p̃s)← L(p̃s) + φs;
16 end
17 l(e)← l(e)(1 + εφe

ce
) for ∀e ∈ Ep̃, where

Ep̃ =
⋃
s∈Sk p̃s, and φe =

∑
s∈Sk:e∈p̃s φs;

18 σ(k, s, u)← σ(k, s, u)(1 + εφu
rksB

k
s

) for
∀s ∈ Sk, u ∈ Vp̃ \ {s}, where
Vp̃ =

⋃
s∈Sk{v ∈ p̃s}, and

φu =
∑
s∈Sk:u∈p̃s\{s} φs;

19 end
20 end
21 end
22 Scale L and y after phase ρ− 1 by 1/ log1+ε 1/γ;
23 λ← (ρ− 1)/ log1+ε 1/γ;
24 return (λ,y,P,L).

Our FPTAS to PO-MAP is presented in Algorithm 2. A bold
symbol denotes a vector of normal symbols hereafter. In the

Algorithm 3: Algorithm PrimUpdt(G,Γ, k, l, σ, ω′)
Input: Network G, application set Γ, index k, length

functions l and σ, tolerance ω′
Output: Paths p̃ = (p̃s)

T
s∈Sk , bandwidth

φ = (φs)
T
s∈Sk , selected node ṽ, fraction of

flow η̃
// path computation

1 for ∀v ∈ Fk do
2 for ∀s ∈ Sk do
3 p̃v,s ← arg min

p∈Pkv,s
{
∑
e∈p

l(e) +
∑

u∈p\{s}
σ(k, s, u)};

4 end
5 end
6 ṽ ← arg minv∈Fk{

∑
s∈Sk B

k
s ζk,v,s(l, σ)};

7 p̃s ← p̃ṽ,s for ∀s ∈ Sk;
// bandwidth allocation

8 Υe ← 0 for ∀e ∈ E ;
9 Υs,u ← 0 for ∀s ∈ Sk, u ∈ V \ {s};

10 for ∀s ∈ Sk do
11 for link ∀e ∈ p̃s do
12 Υe ← Υe +Bks ;
13 end
14 for node ∀u ∈ p̃s \ {s} do
15 Υs,u ← Υs,u +Bks ;
16 end
17 end
18 Υ1

max ← maxe∈E{Υe/ce};
19 Υ2

max ← maxs∈Sk,u∈V\{s}{Υs,u/r
k
sB

k
s };

20 η̃ ← 1/max{Υ1
max,Υ

2
max}, φs ← Bks · η̃ for ∀s;

21 return (p̃,φ, ṽ, η̃).

process, the algorithm keeps track of both a primal solution,
denoted by variables (y,L) (note that λ can be computed based
on L), and a dual solution, denoted by the length functions (l,
σ) (note that both variables z and ϕ can be computed based
on l and σ). Both solutions will be gradually updated. Initially,
each link e’s dual length is initialized to γ/ce, and each
node u’s dual length (regarding application k’s data source
s) is initialized to γ/rksB

k
s . The algorithm runs in phases

(Lines 3–21), in each phase going through an iteration for each
application k (Lines 5–20). In each iteration, the algorithm tries
to push exactly Bks amount of flow for each data source s of
application k. This is done in steps (Lines 7–19), where in
each step, we push the same fraction of flow (η̃) to the same
candidate host (ṽ) from all data sources. This ensures that
when we update the primal solution, the increment in variable
y(k, v) is proportional to the flow pushed to v from any data
source s ∈ Sk, thus satisfying both Constraints (4b) and (4c).
This is achieved by first calling the PrimUpdt subroutine to
get a feasible primal update, denoted by (p̃,φ, ṽ, η̃), and
then updating the primal solution in Lines 9–16. After primal
update, the algorithm then updates the dual lengths l(e) based
on the bandwidth φe pushed along each link e, in Line 17; it
also updates σ(k, s, u) based on the bandwidth at each node,
in Line 18. It stops when ∆(l, σ) ≥ 1, after which it scales the
flows to enforce the link capacity constraints in Lines 22–23.
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A key building block is the PrimUpdt subroutine shown in
Algorithm 3, which produces a primal update for application
k that will be incorporated into the current primal solution. It
starts from finding the dual-shortest feasible path from every
data source s ∈ Sk to every candidate host v ∈ Fk, denoted
as p̃v,s. The candidate host ṽ corresponding to the minimum
value ψk(l) is picked, along with the corresponding paths to
ṽ, denoted as p̃. Next, it derives a bandwidth allocation, such
that 1) each data source s’s bandwidth (φs) is proportional to
its demand Bks , 2) total bandwidth on every link e does not
exceed e’s capacity ce, 3) the robustness requirement is also
satisfied at each node u for each application’s each data source,
and 4) the minimum ratio (η̃) between any source’s bandwidth
and its demand is maximized. This is done in Lines 8–20 of
Algorithm 3. Node ṽ, paths p̃ and bandwidth allocation φ are
then returned along with the resulting scaling ratio η̃.

PrimUpdt relies on finding dual-shortest feasible paths in
Line 12. This task itself is non-trivial, as it is equivalent
to the Delay Constrained Least Cost path (DCLC) problem,
which itself is NP-hard. Nevertheless, there exist FPTASs for
DCLC [33], which can obtain a (1 + ω′)-approximation of
the dual-shortest feasible path within polynomial time. With
carefully selected ε, ω′ and γ, such an approximation is
sufficient for obtaining our desired performance bound.

Let us now discuss the example in Fig. 1. For simplicity,
we omit robustness and the dual variables σ(k, s, w). Dual
variable l(e) acts as the shadow price for using a link, i.e.,
how congested the link is based on the existing flow. Initially,
all links in Fig. 1 have the same shadow price since they have
the same capacity; we assume the price is l(e) = 1.0 for ∀e.
Executing PrimUpdt, we are to find 1) a host node v ∈ {X,Y},
and 2) a path from a to v and a path from b to v, such that
the demand-weighted sum of shadow prices of both paths is
minimized. Based on the graph, the host selected is X, and the
paths are A–B and C–A–B respectively. We then have both
paths allocated with 4 Mbps of flow, so as not to exceed the
bottleneck capacity of 8 Mbps on link A–B. Next is to update
the shadow prices on all links used. For simplicity, we assume
ε = 0.5. Each link’s update is based on the flow pushed along
it, and we have l(A–B) = 1.0 · (1 + 0.5 · 8/8) = 1.5, and
l(C–A) = 1.0·(1+0.5·4/8) = 1.25. Clearly, both A–B and C–
A are now more expensive than the other links due to the flow,
with A–B being even more expensive due to being saturated
in the first round. If we repeat the above process, the next host
that we find is Y, since now the sum price of C–E–F and A–
D–F is lower than that of C–A–B and A–B. Again, we allocate
the bottleneck bandwidth along these paths, this time both
equal to 5 Mbps. Note that when calculating the bandwidth, we
omit all the flow pushed in previous rounds. Also, if we have
multiple applications, they must be all fulfilled once in each
phase, and hence we will push 1 Mbps instead of 5 Mbps to
finish the current phase, as shown in the algorithm. Repeating
this process, the algorithm will approximately distribute the
load over different host nodes and/or paths after a number of
phases. Though we may exceed link capacities by pushing the
bottleneck flow for many times, this can be resolved by scaling
the final flow based on the capacities. With the above in mind,
we next rigorously analyze the performance of our algorithm.

Theorem 3. Given G, Γ, and ω ∈ (0, 1), APO-MAP (with Line 3
of the PrimUpdt subroutine replaced by a DCLC FPTAS) can
compute a (1 − ω)-approximation of the optimal PO-MAP
solution, within time polynomial to both the input size and
1/ω, and hence is an FPTAS to PO-MAP.

Proof: We first prove the approximation ratio of APO-MAP,
and then prove its time complexity.
Part I (Approximation Ratio): We first assume the optimal
primal objective λ∗ ≥ 1; this assumption will be removed later
on. Due to the strong duality of LP, the optimal dual objective
∆∗ is equal to λ∗. Let (ρ, k, τ) denote step τ of iteration
k of phase ρ in the algorithm. Given a symbol used in the
algorithm, ν ∈ {l, σ, ζk,v,s, ψk, α,∆, φs, ṽ, p̃s}k,v,s,e, we use
νρ,k,τ , νρ,k and νρ to denote the corresponding values in/after
the corresponding step, iteration and phase, respectively. We
also use ν to denote ν(l, σ) if no ambiguity is introduced.

Based on the primal-dual updates, we have the following:

∆ρ,k,τ =
∑
e∈E

cel
ρ,k,τ−1(e) + ε

∑
s∈Sk

φρ,k,τs

∑
e∈p̃ρ,k,τs

lρ,k,τ−1(e)

+ ε
∑
s∈Sk

φρ,k,τs

∑
u∈p̃ρ,k,τs \{s}

σρ,k,τ−1(k, s, u)

≤ ∆ρ,k,τ−1 + ε(1 + ω′)
∑

s∈Sk
φρ,k,τs ζρ,k,τ

k,ṽρ,k,τ ,s
,

due to that each path p̃ρ,k,τs is a (1 + ω′)-approximation of
the dual-shortest feasible (s, ṽρ,k,τ )-path, and the dual-shortest
feasible path lengths are non-decreasing during the algorithm.

As in each iteration k, we push exactly Bks flow for ∀s ∈ Sk,
we have the following by summing up for all steps:

∆ρ,k ≤ ∆ρ,k−1 + ε(1 + ω′) min
v∈Fk

∑
s∈Sk

Bks ζ
ρ,k
k,v,s

≤ ∆ρ,k−1 + ε(1 + ω′)ψρ,kk .

Summing up for all applications (iterations), we then have:
∆ρ ≤ ∆ρ−1 + ε(1 + ω′)αρ.

Since we know that ∆ρ

αρ ≥ ∆∗ ≥ 1, we further have:

∆ρ ≤ ∆ρ−1

1− ε(1+ω′)
∆∗

≤ ∆0(
1− ε(1+ω′)

∆∗

)ρ
≤ ∆0

(1− ε(1 + ω′))
exp

(
(ρ− 1)ε(1 + ω′)

∆∗(1− ε(1 + ω′))

)
,

where the last inequality is due to that (1 + x) ≤ exp(x).
The initial dual objective value is ∆0 = (E + (V − 1)S)γ

given the initial l and σ. Let ρ∗ be the last phase before the
algorithm stops. We know that ∆ρ∗ ≥ 1 and ∆ρ∗−1 < 1. Then
we can bound the optimal dual objective value ∆∗ as follows:

∆∗ ≤ (ρ∗ − 1) · ε(1 + ω′)

(1− ε(1 + ω′)) ln 1−ε(1+ω′)
(E+(V−1)S)γ

.

To bound the optimal primal objective value λ∗, first observe
that each primal update only increases the bandwidth on each
link e by at most ce, and the bandwidth at each node u by
rksB

k
s for application k’s data source s. Therefore, when the

flow through a link e increases by exactly ce, its dual length
l(e) is increased by at least (1 + ε) times, due to the dual
update in Line 17; similarly, when the flow of (k, s) through
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a node u increases by rksB
k
s , the node’s dual length σ(k, s, u)

is increased by at least (1 + ε) times, due to the dual update
in Line 18. Now, as ∆ρ∗−1 < 1, we have lρ

∗−1(e) < 1/ce
for ∀e ∈ E , and σρ

∗−1(k, s, u) < 1/rksB
k
s for ∀k, s, u.

Therefore, the final flow after phase ρ∗ − 1 scaled by a factor
of 1/ log1+ε 1/γ is strictly feasible. Since in each phase we
push exactly Bks flow for each data stream, the scaling ratio
after ρ∗−1 phases is exactly ρ∗−1. Scaled by 1/ log1+ε 1/γ,
the scaling ratio λ = (ρ∗ − 1)/ log1+ε 1/γ is strictly feasible.

Based on these, the primal-dual ratio is bounded as follows:

λ

∆∗
≥

(1− ε(1 + ω′)) · ln 1−ε(1+ω′)
mγ

ε(1 + ω′) · log1+ε
1
γ

.

Given our selection of ε, ω′ and γ, we have λ
∆∗ ≥ 1− ω.

It remains to remove our assumption that λ∗ ≥ 1. Based
on [14], if we can obtain a pair of bounds (λLB, λUB) such
that λ∗ ∈ [λLB, λUB], then we can guarantee λ∗ ≥ 1 by
scaling all demands by 1/λLB. Following [13], we use a path-
based method to find λLB and λUB. For each data stream
(k, s), we use a binary search to find a maximum-capacity
feasible routing path p̄kv,s to each candidate host v ∈ Fk.
Given v, the search sets a threshold β, and then finds a
shortest (s, v)-path (w.r.t. delay) in Gβ , a subgraph of G
that has all links in {e : ce < β} pruned. If the path
has delay no more than Dk, β is increased; otherwise it is
decreased. Let b̄kv,s = mine∈p̄kv,s{ce} be the capacity of p̄kv,s,
and λ̄kv = mins∈Sk{b̄kv,s/Bks , rks}. For each k, we then select
candidate host v̄k = arg maxv∈Fk{λ̄kv}, and let λ̄k = λ̄kv̄k .
Then, our upper bound is λUB = Emink{λ̄k}, as each flow
can be decomposed into up to E paths, with no contention
among each other. A lower bound is λLB = mink{λ̄k}/S, by
scaling using the maximum number of competing flows.
Part II (Time Complexity): For simplicity, we define notation
O∗(f) = O(f logO(1) L), where f is a function of the
input size L. Based on [13], [14], the number of phases
is bounded by ρ∗ ≤ d∆∗ log1+ε

1
γ e = O∗(∆∗

ω2 ), each with
K iterations, and the total number of steps is bounded by
(E + (V − 1)S) log1+ε

1+ε
γ = O∗((E + (V − 1)S)∆∗

ω2 )
plus the total number of iterations. Each step incurs one
PrimUpdt call, which both finds (approximate) dual-shortest
feasible paths for every (v, s) pair, and allocates bandwidth.
According to Xue et al. [33], each path is found in O∗( 1

ω′V E)
time. Bandwidth allocation in PrimUpdt takes O(SV ) time,
as each path consists of at most V − 1 links. Combining
the above, the time complexity of APO-MAP is given by
O∗(∆∗

ω3 SFV E(E + (V − 1)S +K)).
To remove the dependency on ∆∗, we employ the de-

mand scaling technique in [14]. If the algorithm does not
stop after d2 log1+ε

1
γ e phases, we know that ∆∗ ≥ 2. We

then double all demands, hence halving ∆∗, and then re-run
Algorithm 2. Now, we have ∆∗ ∈ [1, SE] after the initial
scaling in Part I. Hence at most O(log2(SE)) demand scaling
rounds are needed to bring ∆∗ within [1, 2], each spending
O∗( 1

ω3SFV E(E + K)) time. Omitting the logarithm terms,
the final complexity is O∗( 1

ω3SFV E(E + (V − 1)S + K))
combined with the initial scaling. The theorem follows.

C. NO-MAP Formulation and Randomized Algorithm

NO-MAP is the hardest among the four problems. Though
its hardness follows from that of NO-SAP, there are O(FK)
possible HD solutions in the worst case for NO-MAP, instead
of the linear number in NO-SAP. This prevents us from
iterating over all possible HD combinations. Below, we first
give an exact formulation of NO-MAP. We similarly define
x(k, v) ∈ {0, 1} as the indicator of whether application k is
hosted on node v ∈ Fk, L(p) ≥ 0 as the bandwidth allocation
on p ∈ P , and λ ≥ 0 as the traffic scaling ratio.

max λ (6a)

s.t.
∑

p∈Pkv,s

L(p) ≥ Bs · λ · x(k, v), ∀k, v, s; (6b)

∑
v∈Fk

x(k, v) = 1, ∀k; (6c)∑
p∈P:e∈p

L(p) ≤ ce, ∀e ∈ E ; (6d)∑
p∈Pks :e∈p

L(p) ≤ rks ·Bks , ∀k, s, e ∈ E ; (6e)

x(k, v) ∈ {0, 1},L(p), λ ≥ 0, ∀k, v, p. (6f)
Explanation: Program (6) has the same form as Program (3),
except Constraint (6e) that enforces link-robustness for each
link e instead of node-robustness for each node u. This is
because NO-MAP cannot support node-robustness: its final
selected host is always a single point of failure.

Due to binary variables x(k, v) and Constraint (6b), Pro-
gram (6) is a Mixed Integer Quadratic Program (MIQP), which
is generally hard to solve. However, by relaxing the integer
constraints on x(k, v), we arrive at a QP that has almost the
same structure as Program (3). We can then apply the same
transformation as from Program (3) to Program (4), which
also generates an LP, in other words, the linear relaxation of
Program (6). The linear relaxation is written as follows:

max λ (7a)

s.t.
∑

p∈Pkv,s

L(p) ≥ Bs · y(k, v), ∀k, v, s; (7b)

∑
v∈Fk

y(k, v) ≥ λ, ∀k; (7c)∑
p∈P:e∈p

L(p) ≤ ce, ∀e ∈ E ; (7d)∑
p∈Pks :e∈p

L(p) ≤ rks ·Bks , ∀k, s, e ∈ E ; (7e)

y(k, v),L(p), λ ≥ 0, ∀k, v, p. (7f)
Due to the similar structure of Program (7) and Program (4),

we can basically adopt the same method as in Algorithms 2
and 3 to obtain an FPTAS to Program (7), for which the
details are omitted. Based on the FPTAS, we then propose a
randomized algorithm to NO-MAP, as shown in Algorithm 4.
It starts by solving Program (7) using a modified version of
Algorithm 3. With the fractional solution, it then randomly
selects a host v ∈ Fk with probability equal to ỹ(k, v)
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(normalized y(k, v)) for each application. After that, it solves
the original NO-MAP program with fixed hosts v = {vk}k
to ensure solution feasibility. This turns out to be a trivial
generalization of the DR subproblem of NO-SAP, and hence
can be solved using the FPTAS in [38].

Algorithm 4: Randomized Algorithm ANO-MAP

Input: Network G, application set Γ, tolerance ω
Output: Scaling ratio λ, host selections v, path sets

P, bandwidth allocation L
1 (λ,y,P ,L)← APO-MAP(G,Γ, ω);
2 for k = 1 to K do
3 ỹ(k, v)← y(k, v)/

∑
v∈Fk y(k, v) for ∀v ∈ Fk;

4 Select v ∈ Fk with probability ỹ(k, v) as vk;
5 end
6 Solve NO-MAP (Program (6)) with fixed HD solution

v = {vk}k, with accuracy ω;
7 return (λ, {vk}k, {P ks }k,s,L).

The time complexity of Algorithm 4 is dominated by the
complexity of the FPTAS to PO-MAP and the FPTAS for
solving the DR subproblem with fixed HD. Therefore, it also
runs in time polynomial to the input size and 1

ω . Unfortunately,
the randomized algorithm does not have a constant approxima-
tion ratio. Non-constant performance bound can be obtained
via conventional stochastic theorems such as the Chernoff
bound. Such a result, however, is far from providing a realistic
performance bound that is useful in practical settings. We thus
omit the theoretical analysis of Algorithm 4 for simplicity.

VII. PERFORMANCE EVALUATION

A. Experiment Settings
We used randomly generated topologies and applications for

performance evaluation. The topologies were generated using
the Waxman model [28]. Each topology has 20 nodes, where
20% randomly selected nodes were facility nodes. Links were
created using parameters α and β in the Waxman model, where
α = β = 0.6. Link capacities were uniformly generated in
[10, 100] Mbps, and delays were uniformly generated in [1, 10]
ms. In each experiment, we generated 5 IoT applications.
An application had [3, 10] data sources. Application delay
bounds were randomly generated in [15, 25] ms. For each
data stream, its bandwidth demand were randomly generated
in [1, 25] Mbps. The default robustness (maximum tolerable
data loss ratio) was 0.5 for all data streams. We set accuracy
ω = 0.5 for the approximation algorithms. Above were the
default parameters. We varied one control parameter in each set
of experiments in order for evaluation under various scenarios.

Our comparison algorithms are shown in Table II. Note that
we proposed algorithms to solve HD and DR both jointly
(SAP, MAP, ODA) and separately (NS and RS for HD,
and GH and DA for DR). In the experiments, we further
decomposed the entire MAP algorithm (Algorithm 4 for the
non-parallelizable case) into its subroutines for solving HD
(Lines 1–5) and DR (Line 6) respectively. Each combination
of HD and DR algorithms was denoted by {HD}+{DR}, e.g.,
NS+GH uses NS for HD and GH for DR.

TABLE II: Implemented Algorithms

SAP Our SAP algorithm. For parallelizable applications,
this is our FPTAS to PO-MAP (Algorithm 2). For
non-parallelizable applications, this is our FPTAS to
NO-SAP (Algorithm 1).

MAP Our MAP algorithm. For parallelizable applications,
this is our FPTAS to PO-MAP (Algorithm 2). For
non-parallelizable applications, this is our random-
ized algorithm to NO-MAP (Algorithm 4).

ODA Optimal Delay-Agnostic algorithm. For paralleliz-
able applications, it just solves an edge-flow multi-
commodity flow (MCF) LP. For non-parallelizable
applications, it attempts all combinations of appli-
cation HD, each solving an edge-flow MCF LP that
neglects applications’ delay bounds. ODA yields an
upper bound on the optimal delay-bounded solution.

NS (HD) Nearest Selection HD heuristic. For each application,
this selects the host with minimum maximum delay
from all data sources.

RS (HD) Random Selection HD heuristic. For each applica-
tion, a random candidate host is selected that is
within the delay bound from every data source.

GH (DR) Greedy Heuristic for DR. This works in rounds
where in each round, the delay-shortest path with
positive capacity is found for every data stream, and
then bandwidth allocation is done as in Lines 8–
20 of Algorithm 3; it stops when any data stream’s
shortest path exceeds the application’s delay bound.

DA (DR) Delay-Agnostic optimal DR solution. An edge-flow
MCF LP, which neglects application delay bounds,
is solved. This yields an upper bound on DR.

We used the following metrics in performance evaluation.
Traffic scaling ratio is the optimization objective λ, which
is the minimum ratio between the allocated bandwidth and
the demand of every data stream. Maximum delay ratio is
the average ratio between the maximum transmission delay
received by any application and its delay bound. Running time
is the average running time of an algorithm in an experiment.

We developed a C++-based simulator which implements all
the above algorithms. The Gurobi optimizer [17] was used
to solve the LPs. Experiments were conducted on a Ubuntu
Linux PC with Quad-Core 3.4GHz CPU and 16GB memory.
Each experiment was repeated for 50 times under the same
setting, and results were taken as the average over all runs.

B. Evaluation Results

In figures, error bars show 95% confidence intervals (CIs).
1) Single-Application Scenario: We use our single applica-

tion experiments to show 1) that our algorithms are close-to-
optimal through comparison with the theoretical upper bound
(ODA), 2) the impact of robustness on provisioning perfor-
mance, and 3) the impact of parallelizability on our algorithms.
The results are shown in Figs. 2–5. For a single parallelizable
application, SAP and MAP are essentially the same algorithm
(Algorithm 2), and hence they have the same performance.
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(a) Parallelizable w/ robustness (b) Non-parallelizable w/ robustness (c) Parallelizable w/o robustness (d) Non-parallel. w/o robustness

Fig. 2: Single application: objective value against accuracy parameter ω.

(a) Parallelizable w/ robustness (b) Non-parallelizable w/ robustness (c) Parallelizable w/o robustness (d) Non-parallelizable w/o robustness

Fig. 3: Single application: running time vs. accuracy parameter ω.

(a) Parallelizable (w/ robustness) (b) Non-parallelizable (w/ robustness)

Fig. 4: Single application: objective value vs. robustness.

(a) Parallelizable (w/ robustness) (b) Non-parallelizable (w/ robustness)

Fig. 5: Single application: running time vs. robustness.

Figs. 2 and 3 show four combination scenarios: robust
parallelizable application, robust non-parallelizable applica-
tion, non-robust parallelizable application, and non-robust non-
parallelizable application. We varied accuracy parameter ω
from 0.3 to 0.8. Note that ω must be strictly positive (ω = 0
represents the optimal solution and hence cannot be obtained
due to the NP-hardness), while ω = 1 means no guarantee
and hence is also meaningless for approximation algorithms.
First, we can see that our SAP FPTASs (MAP in Figs. 2(a)
and 2(c) and SAP in Figs. 2(b) and 2(d)) achieve objective
values extremely close to the upper bound ODA, much greater
than their theoretical bounds ((1 − ω) times the optimal). In
Figs. 2(b) and 2(d), the MAP randomized algorithm achieves
slightly worse performance than the FPTASs, yet its perfor-

mance is still pretty close to ODA and even higher than
(1 − ω) times the optimal (though this is not theoretically
guaranteed). This shows that the proved theoretical bounds are
pretty conservative in practice. Meanwhile, with decreasing ω,
little changes can be observed on the objective value, while
the running time is greatly reduced in Figs. 3(a)–3(d). An
empirical setting of ω ≥ 0.5 can be used in practice to achieve
close-to-optimal performance with reasonable overhead.

Comparing Figs. 2(a) and 2(c) (and similarly Figs. 2(b)
and 2(d)), we can observe the impact of robustness. Enforc-
ing robustness clearly reduces the objective value by great
amounts. This shows that in practice, applications with ro-
bustness requirements can find it much harder to get accommo-
dated when the system has limited resources. Looking at Fig. 3,
running time increases when robustness is removed, which is
due to that the complexity depends on the objective value,
matching our previous analysis. Note that we did not use the
polynomial-time demand scaling technique in our experiments,
in order to better present this correlation.

Comparing Figs. 2(a) and 2(b), we can see the impact of
parallelizability when robustness is enforced. Both ODA and
SAP show that parallelizability reduces the objective value.
This is because parallelizable applications can enjoy the more
strict node-robustness, while non-parallelizable applications
can only achieve link-robustness; clearly the former consumes
more resource, as it guarantees the latter while providing
additional protection. However, when robustness is not en-
forced, we see the opposite in Figs. 2(c) and 2(d). Applications
with parallelizability achieve better scaling ratios than those
without, since without robustness, the parallelizable problem
is an LP relaxation of the non-parallelizable problem, and
hence the former represents an upper bound on the latter.
Looking at running times in Figs. 3(a) and 3(b), the time for
the non-parallelizable case approximately doubles that for the
parallelizable case. This is because in the non-parallelizable
case, the same formulation is solved twice for HD and DR
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(a) Scaling ratio vs. # nodes (b) Scaling ratio vs. connectivity (c) Scaling ratio vs. demand (d) Scaling ratio vs. !

Fig. 6: Multi-application: objective value vs. number of nodes, connectivity (α, β), bandwidth demand, and accuracy (ω).

(a) Running time vs. # nodes (b) Running time vs. connectivity (c) Running time vs. demand (d) Running time vs. !

Fig. 7: Multi-application: running time vs. number of nodes, connectivity (α, β), bandwidth demand, and accuracy (ω).

respectively; in the parallelizable case, both are solved simul-
taneously. Note that Algorithm 1 (SAP in Fig. 3(b)) is much
faster than both Algorithm 2 (SAP/MAP in Fig. 3(a)) and
Algorithm 4 (MAP in Fig. 3(b)), since Algorithm 1 solves a
formulation that has fewer variables. Figs. 3(c) and 3(d) show
similar comparisons. The reason why the running time of MAP
does not double in Fig. 3(d) is that the optimal objective value
decreases greatly due to the non-parallelizability, and hence
the running time of DR is dominated by the time of HD.

We further show in Figs. 4 and 5 the impact of different
robustness parameters. We varied the tolerable loss ratio r
from 0.2 to 0.7. The value r is also strictly positive, since
our robustness scheme cannot (and does not aim to) provide
full protect but is instead to bound the loss due to a failure;
r = 1 means no protection and hence leads to the same results
as the experiments without robustness. With our formulation,
the objective value should increase with the tolerable loss ratio
when the resources are relatively abundant, which is validated
in Fig. 4. Figs. 4(a) and 4(b) show the same comparison as
in Figs. 2(a) and 2(b), i.e., parallelizable applications achieve
worse scaling ratios than non-parallelizable ones due to the
enforcement of node-based instead of link-based protection.
The running time increases with higher objective value due to
the relaxation of robustness requirement (larger tolerable loss).

2) Multi-Application Scenario: Here, we omitted robust-
ness, and focused on the non-parallelizable application case
which is more common in practice. Figs. 6 and 7 show
experiment results for multiple applications, with varying
number of nodes, connectivity, average bandwidth demand,
and accuracy ω. First, MAP outperforms both RS+GH and
NS+GH in relatively large scales. Specifically, MAP can serve
up to 2× the traffic that can be served by RS+GH or NS+GH
in a majority of the experiments. The cost of its superior

performance is its higher running time. MAP is slower than
ODA mainly because the latter does not consider application
delay bounds. Also, with more applications, the running time
of MAP will soon beat that of ODA, as the former is a
polynomial-time algorithm, while the latter’s time complexity
is exponential to the number of applications. The shown trends
basically match our intuition, e.g., increased nodes or links
lead to increased scaling ratios and running times, while larger
bandwidth demands lead to smaller scaling ratios. The positive
correlation between time complexity and the scaling ratio is
further validated in Fig. 7(c). Finally, Figs. 6(d) and 7(d) show
similar results as in Figs. 2 and 3 for MAP, where a looser
accuracy parameter ω does not lead to noticeable performance
loss, but greatly reduces its running time.

(a) HD comparisons (b) DR comparisons

Fig. 8: Multi-application: HD and DR with varying delay.
The above experiments show the superior performance of

our MAP algorithm. In Figs. 8, we further analyze its perfor-
mance for HD and DR separately, where we combined MAP’s
subroutines (denoted as MAP-HD and MAP-DR respectively)
with different heuristics. Shown in Fig. 8(a), delay-aware DR
solutions (GH and MAP-DR) achieve better scaling ratios
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with larger delay bounds, while delay-agnostic solutions do
not. Comparing HD algorithms, MAP-HD still achieves much
better scaling ratios than either NS or RS. Interestingly, RS
outperforms NS, because NS can lead to congestion when a
host is closer to all data sources than the others. Comparing
DR algorithms, MAP-DR outperforms GH. Given fixed HD,
the DA algorithm is optimal for delay-agnostic DR. We can see
that MAP-DR is close-to-optimal when delay bounds are large.
In Fig. 8(b), with MAP-DR, the max delay ratio is always
bounded by but close to 1, meaning it utilizes paths of various
yet strictly bounded delays. GH also respects delay bounds but
uses shorter paths, which leads to low traffic scaling ratios in
Fig. 8(a). ODA and DA are delay-agnostic, hence they can lead
to delays over 2× the bounds, violating the QoS requirements.
In summary, the advantage of MAP comes from both its HD
and DR subroutines, compared to the heuristics.

(a) Objective value vs. # phases (b) Running time vs. # phases

Fig. 9: Heuristic convergence. Shadow shows 95% CIs.
3) Heuristic Usage: The proposed algorithms are close-to-

optimal, but require a large number of phases to be executed.
However, they can also be used in a heuristic manner, by
omitting the demand scaling technique and/or setting a fixed
phase bound. In Fig. 9, we test the heuristic implementation on
larger problem instances, with 5× more nodes (α = β = 0.3
in Waxman model) and 5× more applications. In Fig. 9(a),
we show the objective value after each phase, normalized
by the upper bound ODA. The heuristic algorithm converges
stably, and can quickly find a reasonably accurate solution. A
solution no less than 0.5 (our default ω) of the upper bound
is obtained within 25 phases in most cases. For complexity,
the slightly increased time at higher phase numbers is due to
the extra overhead for maintaining the results of all phases
so far. Since in IoT, typically provisioning is done within a
small geographical area, we expect the number of nodes and
the number of concurrent applications both not to exceed tens
to a hundred. Given that application provisioning is a relatively
infrequent operation that happens in days or even months,
our algorithms and/or this heuristic implementation can well
handle such typical scenarios in practice. Further running time
reduction can be achieved by using heuristics instead of the
FPTAS for the DCLC computations, such as [31].

VIII. CONCLUSIONS

In this paper, we studied the provisioning of real-time pro-
cessing applications in IoT. We considered both the QoS and
the robustness requirements of the applications. We considered
two application types: parallelizable and non-parallelizable.
For either type, we further studied both the provisioning of
a single application, and the joint provisioning of multiple

applications. We proved all four versions of the problem NP-
hard. We then showed that three of the four versions admit FP-
TASs. For the last one, we proposed a randomized algorithm.
We validated the advantages of our proposed algorithms over
several heuristics through simulations.
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