
The Critical Network Flow Problem:
Migratability and Survivability

Ruozhou Yu, Student Member, IEEE, Guoliang Xue, Fellow, IEEE, Xiang Zhang, Student Member, IEEE

Abstract—In this paper, we propose a new network abstrac-
tion, termed critical network flow, which models the bandwidth
requirement of modern internet applications and services. A
critical network flow defines a conventional flow in a network with
explicit requirement on its aggregate bandwidth, or the flow value
as commonly termed. Unlike common bandwidth-guaranteed
connections whose bandwidth is only guaranteed during normal
operations, a critical network flow demands strictly enforced
bandwidth guarantee during various transient network states,
such as network reconfiguration or network failures. Such a
demand is called the bandwidth criticality of a critical network
flow, which is characterized both by its flow value and by its
capability to satisfy bandwidth guarantee in the transient states.
We study algorithmic solutions to the accommodation of critical
network flows with different bandwidth criticalities, including the
basic case with no transient network state considered, the case
with network reconfiguration, and the case with survivability
against link failures. We present a polynomial-time optimal
algorithm for each case. For the survivable case, we further
present a faster heuristic algorithm. We have conducted extensive
experiments to evaluate our model and validate our algorithms.

Keywords—Critical network flow, traffic engineering, bandwidth
guarantee, flow migration, survivability

I. INTRODUCTION

Networks have become an integrated component of mod-
ern computing infrastructures, due to the rapid advances of
network-based computing paradigms, such as cloud comput-
ing, mobile edge computing, etc. As an upside, networks bring
scalability and robustness, advancing the computation power
beyond the individual chips. Yet as a downside, networks also
bring hardness in performance isolation and guarantee, due
to their shared nature and the competition among entities.
Network congestion can greatly degrade the performance of
overlying services, affecting user experience and the profitabil-
ity of the service providers.

This has motivated a large body of work on network perfor-
mance guarantee in various network scenarios, including load
balancing, traffic engineering, network virtualization (virtual
network embedding), etc. Among these, traffic engineering
(TE) is one of the most attended approaches, due to its model
simplicity (compact representation of different traffic as net-
work flows), problem tractability in theory (polynomial-time
solvability when flows are splittable), and practicality for im-
plementation (via existing protocols like Multi-Protocol Label

Yu, Xue and Zhang ({ruozhouy, xue, xzhan229}@asu.edu) are all with
Arizona State University, Tempe, AZ 85287. All correspondences should be
addressed to Guoliang Xue. This research was supported in part by NSF
grants 1421685, 1461886 and 1704092. The information reported here does
not reflect the position or the policy of the federal government.

Switching Traffic Engineering (MPLS-TE) [35] or systems like
Software-Defined Networking (SDN) [24]). In plain words,
TE jointly plans end-to-end routes and per-route bandwidth
allocation for each connection, hence achieving both route
flexibility and total bandwidth guarantee.

Existing TE solutions focus on guaranteeing bandwidth in
the stable state. This means that while each connection has
guaranteed bandwidth in the long run, it may temporarily suffer
from arbitrarily bad performance during transient network
states. These states include but are not limited to network re-
configuration and network failures. Existing researches reveal
that transient states can have a great impact on the performance
of many network-based services [14], [20].

In this paper, we investigate how to provide proper band-
width guarantee during transient network states. We start
by proposing bandwidth-guaranteed network flows as a new
model for network traffic engineering. A network flow cor-
responds to a user traffic request (termed a commodity) in
the network. We call a commodity with explicit bandwidth
requirement a critical commodity, and the corresponding net-
work flow a critical network flow (short as a critical flow).
While a traditional commodity is merely defined by its ingress
and egress points, a critical commodity has two additional
dimensions: its bandwidth requirement, and its criticality
requirement. The criticality requirement of a commodity is
defined as the set of transient states (in addition to the stable
state) in which the commodity’s bandwidth guarantee must
be enforced. Therefore, each critical commodity essentially
asks for strict bandwidth guarantee, both when the network
is stable and when the network is undergoing any transient
state specified in its criticality requirement.

Based on these concepts, we further study how to accommo-
date critical commodities in an online network system, where
(both critical and non-critical) commodities arrive randomly
over time. Starting from a basic model where no transient
state is considered, we build solutions for accommodating
critical commodities with network reconfiguration require-
ments (migratability requirements), and with network link
failure requirements (survivability requirements). We present
mathematical formulations of these problems, and propose
polynomial-time optimal algorithms per accommodation. For
the latter problem with a high-complexity optimal algorithm
(accommodation with survivability requirements), we further
propose a heuristic algorithm. Important performance metrics
of the proposed solutions have been evaluated through exten-
sive simulation experiments.

To summarize, our contributions are as follows:
• We propose a novel network abstraction, the critical

network flow (short as critical flow), to model the demand

1

for bandwidth guarantee of user traffic, over different
transient network states in addition to the stable state.

• We study the online accommodation of critical commodi-
ties with two kinds of criticality requirements: migratabil-
ity requirement and survivability requirement. We propose
polynomial-time optimal and faster heuristic solutions to
accommodate each arriving critical commodity.

• We evaluate the performance of our model and algorithms
via extensive simulation experiments.

The rest of this paper is organized as follows. We introduce
existing work related to this paper in Section II. We present
our system model, including the proposed critical flow ab-
straction, in Section III. We then illustrate the basic model
for critical flow accommodation, with no consideration of
transient states, in Section IV. We illustrate the accommodation
with migratability requirement, where critical commodities can
have guaranteed bandwidth during network reconfigurations,
in Section V. We further illustrate the accommodation with
survivability requirement, where critical commodities can sur-
vive an arbitrary single link failure in the network, without
having their bandwidth guarantee affected, in Section VI. We
present our simulation results for performance evaluation in
Section VII. We conclude this paper in Section VIII.

II. BACKGROUND, MOTIVATION AND RELATED WORK

A. Quality-of-Service Routing and Traffic Engineering
Our proposed model is most related to research in the areas of
Quality-of-Service (QoS) routing and TE. Both areas seek to
find joint routing and bandwidth allocation solutions to ensure
throughput of network commodities. QoS routing considers the
routing and bandwidth allocation of a single commodity at a
time, and has been studied in [6], [10], [23], [38], [44] and
other related papers. TE extends QoS routing by considering
multiple co-existing commodities, which arrive either at the
same time (offline TE) or randomly over time (online TE) [37].
Two types of routing schemes have been studied in TE: single-
path routing and multi-path routing. TE with single-path rout-
ing allocates bandwidth for each commodity along only one
data path, and has been studied in [7], [40] and other related
work. On the contrary, TE with multi-path routing can allocate
bandwidth on multiple paths simultaneously, and thus enables
more flexible utilization of the network bandwidth [17], [22],
[32]. While early TE solutions focused on utilizing Equal-
Cost Multi-Path (ECMP) for multi-path TE, recent advances in
network protocols and systems, like Multipath with MPLS [35]
and SDN [24], have enabled more flexible path selection and
traffic splitting. This paper falls into the category of online TE
with multi-path routing. The reason is that online arrival of
commodities is more in line with real network environments,
and multi-path routing is more suitable for utilizing the rich
path diversity in modern networks [11], [22], [28].

Network flow and multi-commodity flow have been exten-
sively used to model TE with multi-path routing, for example,
in [16], [20], [22], [28]. A network flow essentially describes
the per-link bandwidth allocation for a commodity, wherein
a multi-commodity flow captures the bandwidth sharing of
different commodities over the same link. Our method follows

existing multi-commodity flow approaches for multi-path TE,
but additionally considers bandwidth guarantee during tran-
sient network states, which has not been taken into account in
the above papers and other related work.

B. Network Reconfiguration
One transient network state considered in this paper is network
reconfiguration, when the network updates routing paths and
bandwidth allocation to accommodate new commodities or
demand changes of existing commodities. Many have focused
on different issues arisen in network reconfiguration, including
path consistency [30], policy consistency [26], [27], [36],
and congestion-free flow migration [5], [14], [15], [21]. The
problem we study falls into the category of congestion-free
flow migration, which requires that network reconfiguration
must not introduce congestion to existing critical flows, and is
similarly modeled as in [5], [14], [15]. However, we consider
deriving a new network state which can be migrated from the
current state without congestion, while [14] and [15] only seek
to find congestion-free migration phases given the new network
state as input. Reference [5] also studies deriving new network
states with congestion-free migration, but their solution may
involve an exponential number of migration phases. In practice,
this may lead to large migration overhead. Our solutions focus
on one-phase migration for the sake of overhead control.
In addition, we also consider flow migration during network
failures, and pro-actively derive congestion-free migration for
failure recovery.

C. Survivable Routing and TE
Multi-path routing naturally provides a certain extent of re-
liability, in the sense that a single link failure will not fully
halt a flow from transmitting, but only degrades its through-
put by a certain amount. However, this is not sufficient for
critical flows, which demand strictly guaranteed throughput
during failures. Two types of survivability mechanisms provide
protection against a specific level of failure. Pro-active mech-
anisms provision extra bandwidth initially during commodity
accommodation, and use the bandwidth to fast recover affected
commodities when failure happens [20]. Reactive mecha-
nisms do not provision extra bandwidth, but seek for backup
bandwidth only after the failure happens [20]; as a result,
reactive mechanisms do not guarantee recovery of the accepted
commodities. We focus on pro-active mechanism design in
order to satisfy the stringent bandwidth requirement of critical
commodities. We also aim to minimize the impact of our
survivability mechanism over other unaffected commodities.
Specifically, we aim to ensure congestion-free migration of all
critical flows during the failure recovery process; we also aim
to achieve work conservation by enabling utilization of the
pre-provisioned backup resources when no failure is present.

Traditional survivable TE solutions have focused on path-
based approaches, where each primary path is accompanied by
a backup path, which protects the commodity from different
failure scenarios [12], [13], [18], [19], [34]. On the contrary,
Acharya et al. [2] found out that dedicated path-based protec-
tion is commonly an overkill for achieving reliability goals,

2

and proposed the first flow-based reliability mechanism; their
work was further extended by Zhang et al. [48] to incorporate
differential delay constraints. However, references [2] and [48]
do not ensure full bandwidth protection against single link
failure. Rather, they focus on bounding the amount of band-
width loss due to a single link failure. Instead, we aim to fully
ensure the throughput of critical commodities during single
link failure, yet still avoid the overconsumption of bandwidth
for provisioning dedicated backup paths. Liu et al. [20] also
considered full bandwidth guarantee with pro-active backup
provisioning, yet their solution involves pre-computed tunnels
for each commodity as input; our solution does not require
pre-computation of pairwise tunnels. In addition, we consider
congestion-free migration of critical flows during the failure
recovery process that further enforces critical commodities’
bandwidth requirements, which is different from all the above
and other related work.

Other than TE, survivable routing has been studied in the
context of optical networks [25], [29], [31], [41]–[43]. Similar
to the above, these studies also focus on providing “all-or-
nothing” protection using disjoint routing paths. Recently,
the concept of tunable survivability has been proposed, which
provides a quantitative measure of routing survivability based
on the failure probability of links [3], [45], [46]. However, the
intrinsic difference between our study and the above is that we
consider bandwidth protection in addition to route protection.
In our model, critical commodities ask for bandwidth guaran-
tee during different network states. Hence these existing results
do not apply in our model.

Another related problem is to test end-to-end connectivity
of a given network, which can be used for failure detection.
This problem has been studied in recent papers [8], [9].

III. SYSTEM MODEL

Network model: We consider a network denoted by a directed
graph G = (V, E), where V is the set of network nodes, and
E is the set of links. We assume that the network has |V| = n
nodes and |E| = m links in total. For v ∈ V , we use in(v) ⊆ E
and out(v) ⊆ E to denote the sets of incoming and outgoing
links of node v respectively. Each link e ∈ E is associated with
a capacity, denoted by ce > 0. In the following, we use the
terms “vertex” and “node” interchangeably; similarly, “edge”
and “link” are used interchangeably.
Request model: The network accepts data transfer requests
from network users. Each user request, termed a commodity,
is defined as a tuple (s, t; d), where s, t ∈ V are the source
and destination nodes respectively, and d ≥ 0 is the request’s
bandwidth demand. Specifically, if a commodity has d > 0, the
commodity is a critical commodity, which asks for bandwidth
guarantee of d. If a commodity has d = 0, the commodity is
a non-critical commodity, and can be served in best efforts.

Without loss of generality, we assume that all critical com-
modities in the network share the same criticality requirement,
i.e., the network decides which transient states to be covered
for all critical commodities. However, this is only for ease of
illustration, and our solutions can be easily extended to cover
different transient states for different critical commodities.

In practice, bandwidth criticality can be implemented using
packet prioritization and rate limiting. Prioritization is enforced
such that critical commodity packets have strictly higher prior-
ity than non-critical commodity packets. By limiting the maxi-
mum rate of each commodity along each path, congestion can
be avoided if the allocated bandwidth enforces link bandwidth
capacity constraints. Rate limiting can be employed either at
the data source (application- or operating system-level rate
limiting) or at the ingress switch (e.g., using OpenFlow [24]).

Flow model: We assume that the network is capable of multi-
path routing. To accommodate a commodity, the network needs
to determine the routing paths and the bandwidth allocation
for each path. The network flow abstraction captures both
characteristics, and is defined as follows:

Definition 3.1: A single-commodity flow (or a flow) re-
garding commodity K = (s, t; d) is defined by a mapping
F : E 7→ R∗ (where R∗ is the non-negative real number set)
that satisfies the following constraints:
• Flow conservation: For ∀v ∈ V \ {s, t},∑

e∈in(v) F (e)−
∑
e∈out(v) F (e) = 0;

• Capacity: F (e) ≤ ce for ∀e ∈ E ;
• Bandwidth guarantee: If K is critical (d > 0), then∑

e∈in(t) F (e)−
∑
e∈out(t) F (e) = d.

The value f(F)
∆
=

∑
e∈in(t) F (e) −

∑
e∈out(t) F (e) is called

the flow value of flow F . 2

Let K = 〈K1, . . . ,Kk〉 be an ordered set of commodities.
Note that the order is only for ease of illustration, and does not
impair the generality of our model. The corresponding flows
of the commodities are defined as follows:

Definition 3.2: A multi-commodity flow regarding com-
modities K = 〈K1, . . . ,Kk〉 is defined by an ordered set
F = 〈F1, . . . , Fk〉, where for i = 1, 2, . . . , k, Fi : E 7→ R∗
is a flow for commodity Ki as defined in Definition 3.1, and
jointly all flows in F satisfy the following constraint:

• Joint capacity:
∑k
i=1 Fi(e) ≤ ce for ∀e ∈ E .

We use f(F) = 〈f1, . . . , fk〉 to denote the corresponding flow
values of the multi-commodity flow, where fi = f(Fi) is the
flow value of Fi, for i = 1, 2, . . . , k. 2

For simplicity, we use f instead of f(F) if no ambiguity is
introduced. We also assume that if the corresponding commod-
ity Ki /∈ K, then Fi(e) = 0 for ∀e ∈ E , and the corresponding
flow value fi = 0.

Service model: We assume that the network operates in an
online manner. User commodities arrive randomly throughout
time. Before a commodity’s arrival, no knowledge about its
characteristics is known to the system. Hence the network pro-
cesses commodities one-by-one in the order of their arrivals,
based on the network states at their arrivals respectively. We
next define the network state at an arbitrary time.

Definition 3.3: The network state at an arbitrary time is
defined by a tuple S = (G,K,F), where G is the network
topology, K is the set of currently accommodated commodities,
and F is the corresponding multi-commodity flow of K. We
use N ⊆ K to denote the set of non-critical commodities, and
C ⊆ K to denote the set of critical commodities. 2

3

Given the current network state S, and a new critical com-
modity K+, the critical flow problem is to find a new network
state S+, which accommodates K+ with bandwidth guarantee,
and does not affect any existing critical commodity’s guaran-
tee, meanwhile achieving certain network goals and properties.
Non-critical commodities can always be accommodated in
best efforts with the remaining bandwidth left by the critical
commodities. We use K+ = K ⊕ K+ to denote the new set
of commodities after the arrival of K+ (⊕ as the insert-at-
tail operator of an ordered set), and C+ = C ⊕K+ to denote
the new critical commodity set; N+ = N for the purpose of
this problem, hence is not explicitly marked. Next we study
different versions of the critical flow problem.

IV. THE CRITICAL FLOW PROBLEM: BASIC CASE

We begin with the basic critical flow problem. Our first-
class goal is to secure sufficient bandwidth for each critical
commodity, including the newly arrived one. In the mean time,
we want to achieve work conservation by maximizing non-
critical flows given the satisfaction of all critical flows. The
basic critical flow problem is defined as follows:

Definition 4.1: Given the current (old) network state S =
(G,K,F), and a new critical commodity K+, the basic critical
flow problem CFP(G,K,F ,K+) seeks a new network state
S′ = (G,K+,F+), such that 1) for each critical commodity
Ki ∈ C+, its flow value satisfies its bandwidth requirement,
i.e., fi = di, and 2) the sum of flow values of all non-critical
commodities N is maximized. 2

Let F+ = 〈F+
1 , . . . , F

+
k 〉 be the (ordered) set of variables

for per-commodity flow assignments, and f = 〈f+
1 , . . . , f

+
k 〉

be the flow value variables, where k = |K+| is the number of
commodities (including the new one), we formulate the basic
critical flow problem as follows:

Program (1): CFP(G,K,F ,K+)

Variables:
F+
i (e) new flow assignment of Ki ∈ K+ on e
f+
i flow value of Ki ∈ N

max
∑
Ki∈N

f+
i (1a)

s.t. ∀Ki ∈ K+,∀v ∈ V \ {si, ti} :∑
e∈in(v)

F+
i (e)−

∑
e∈out(v)

F+
i (e) = 0; (1b)

∀Ki ∈ C+ :∑
e∈in(ti)

F+
i (e)−

∑
e∈out(ti)

F+
i (e) = di; (1c)

∀Ki ∈ N :∑
e∈in(ti)

F+
i (e)−

∑
e∈out(ti)

F+
i (e) = f+

i ; (1d)

∀e ∈ E :
∑

Ki∈K+

F+
i (e) ≤ ce; (1e)

∀Ki ∈ K+,∀e ∈ E : F+
i (e) ≥ 0, f+

i ≥ 0. (1f)

Explanation: The goal of this program is to guarantee band-
width for critical flows, meanwhile maximizing non-critical
flows. Objective (1a) is to maximize the sum of flow values
of all non-critical commodities. Constraint (1b) defines flow
conservation at each node. Constraint (1c) defines the flow
value of critical commodity Ki ∈ C+ to be exactly the
bandwidth demand di. Constraint (1d) further defines the flow
value of each non-critical commodity Ki ∈ N , which is to be
maximized in the objective. Constraint (1e) specifies the per-
link bandwidth capacity constraints. Constraint (1f) defines the
range of each variable.

Remark 4.1: In the CFP formulation (Program (1)), crit-
ical commodities have higher priority than non-critical com-
modities, as we enforce strict bandwidth guarantee for critical
commodities in Constraint (1c), while maximizing throughput
of non-critical commodities only when all critical commodities
are satisfied. 2

We propose a solution to CFP in the following theorem:
Theorem 4.1: CFP can be optimally solved in O((km +

k)3L) time, where m is the number of links, k is the number
of commodities, and L is the input size. 2

Proof: The CFP problem, as formulated in Program (1), is
a linear program with O(km+k) variables. Based on existing
solution [47], it can be solved in O((km+ k)3L) time.

If the program returns a feasible solution, the new critical
commodity is then accommodated based on the flow assign-
ments; otherwise, the commodity is rejected by the network
due to lack of sufficient bandwidth.

V. THE CRITICAL FLOW PROBLEM: MIGRATABILITY

In the last section, we present a basic formulation and solution
for the critical flow problem, where bandwidth criticality is
only guaranteed in both the old and the new network states,
but not in between. During the migration process, congestion
may happen due to the asynchronous update of flows [5], [14],
which leads to violated bandwidth criticality.

In this section, we study the critical flow problem with
congestion-free migration (also termed migratability require-
ment in this paper). A congestion-free migration ensures
that during the migration process, no congestion happens on
any link. We aim to find a new network state that allows
congestion-free migration for critical commodities, meanwhile
minimizing the migration cost and maximizing the throughput
of non-critical flows. Hence both the new critical commodity
and the existing critical commodities will have their bandwidth
requirements satisfied during the migration.

A. Congestion-free Migration
The migration of flows incurs changing network paths for
individual commodities. Since each commodity may adjust its
paths asynchronously, a link may carry both the old flows and
the new flows at the same time. This may cause congestion if
the load on some link is temporarily higher than its capacity.

Fig. 1 shows an example of possible congestion during flow
migration and a congestion-free migration. In a network of
6 nodes, a commodity K1 = (s1, t1; 1) already exists, with
its flow consisting of two paths: p1 = (s1 → t1) and p2 =

4

(a) Congestion due to new request (b) Congestion during flow migration (c) Congestion-free flow migration

Fig. 1: Example of (a) congestion on link (x, y) due to arrival of a new commodity K2 = (s2, t2; 1), (b) congestion due to
asynchronous migration of flows for K1 and K2, and (c) congestion-free migration when (x, y) has more bandwidth.

(s1 → x → y → t1), both with 0.5 bandwidth. Now, a new
commodity K2 = (s2, t2; 1) arrives in Fig. 1(a). If simply
adopted to the only path p3 = (s2 → x→ y → t2) that it can
take, K2 will cause congestion on link (x, y), downgrading
the performance of K1, as in Fig. 1(a). To avoid this issue,
commodity K1’s traffic on p2 (which shares link (x, y) with
K2’s path) has to be migrated to p1, as in Fig. 1(b). However,
while this migration avoids congestion between K1 and K2 in
the long term, it still does not guarantee congestion-freeness
during the migration, due to the possible asynchrony between
K1’s and K2’s migrations. Assume that K2 starts transmission
on path p3 before K1 can migrate its flow on path p2. This
still causes congestion on link (x, y). The only way to provide
congestion-free migration is shown in Fig. 1(c). By enlarging
link (x, y)’s bandwidth to 1.5, now even when K2 transmits
before the completion of K3’s migration, the total bandwidth
of their flows are still no greater than 1.5, hence avoiding
congestion even during the migration. Essentially, each link’s
capacity should be sufficient to cover the maximum bandwidth
between the old and the new flows for any commodity whose
either flow uses the link, in order to ensure a congestion-free
migration.

In practice, enlarging network capacity during runtime is
not realistic. To avoid congestion, the network then needs
to carefully provision the new network state, such that the
capacity constraint of each link is enforced when the network
flows are updated in arbitrary order. Specifically, we define a
congestion-free migration as follows:

Definition 5.1: Given two network states S = (G,K,F)
and S′ = (G,K′,F ′), a congestion-free migration exists from
S to S′ iff

∑
Ki∈C∪C′ max{Fi(e), F ′i (e)} ≤ ce for ∀e ∈ E . 2

Note that our definition follows from the consistent migra-
tion definition in [5], [14]. We only consider 1-phase migration
of flows, meaning that only two network states are considered:
the old state and the new state. Involving multiple migration
phases may result in better chance of successful accommo-
dation, but it also brings undesirable overheads including
reconfiguration costs and prolonged flow switching time, as
well as large overhead for computations. Nevertheless, our
approach can be easily extended to consider up to a constant

number of phases, where multiple intermediate states may be
generated; the formulation size, however, increases linearly
with the number of phases considered, as shown in [14].

B. Optimization Objectives
We consider a two-layer optimization objective for accommo-
dating the new critical flow with congestion-free migration.
Even when the migration process is congestion-free, network
state migration can still incur overhead and potential perfor-
mance loss for the critical commodities. Therefore, we aim to
minimize the flow offsets in the migration. We introduce the
migration cost of critical flows, defined as follows:

Definition 5.2: Let each link e ∈ E be associated with
a non-negative unit migration cost πe, which is the cost for
changing unit flow value for any critical commodity on this
link, set by the network operator. Let S and S′ be the network
states before and after migration respectively. For each critical
commodity Ki ∈ C∪C′ and each link e ∈ E , the flow offset of
Ki on e is defined by φi(e)

∆
= |Fi(e)−F ′i (e)|. The migration

cost of commodity Ki on e is then πeφi(e). 2

Our primary objective is to minimize the sum of migration
costs over all commodities on all links.

Given the minimum migration cost of critical flows, our
secondary objective is to maximize the throughput of the non-
critical flows, in order to achieve work conservation and utilize
the remaining network resources as much as possible.

C. Problem Formulation
Given the above, the critical flow problem with migratability
requirement is defined as follows:

Definition 5.3: Given the current (old) network state S =
(G,K,F), and a new critical flow K+, the critical flow prob-
lem with migratability requirement, MCFP(G,K,F ,K+),
seeks a new network state S′ = (G,K+,F+), such that
1) for each critical commodity Ki ∈ C+, its flow value
satisfies its bandwidth requirement, i.e., fi = di, 2) each
critical commodity Ki ∈ C can be migrated from S to S′

without congestion as defined in Definition 5.1, 3) the solution
minimizes the total migration cost as primary objective, and 4)

5

the solution maximizes the total throughput of all non-critical
commodities as secondary objective. 2

Since this is a multi-objective optimization problem, we
propose the following hierarchical formulation for the problem.

Program (2): MCFP(G,K,F ,K+)

Variables:
F+
i (e) new flow assignment of Ki ∈ K+ on e
φi(e) flow change of Ki ∈ C+ on link e
f+
i flow value of Ki ∈ N

min Φ∗ =
∑

Ki∈C+

∑
e∈E

πeφi(e) (primary) (2a)

max
∑
Ki∈N

f+
i (secondary) (1a)

s.t. (1b), (1c), (1d), (1e)

∀e ∈ E :
∑

Ki∈C+
max{Fi(e), F+

i (e)} ≤ ce; (2b)

∀Ki ∈ C+,∀e ∈ E : φi(e) = |F+
i (e)− Fi(e)|; (2c)

∀Ki ∈ K+,∀e ∈ E : F+
i (e), f+

i , φi(e) ≥ 0. (2d)

Explanation: The program is a hierarchical formulation with
two layers of objectives. It inherits the variable set of
Program (1), with additional variables φi(e) to denote the
per-commodity per-link flow changes. As the primary ob-
jective, it minimizes migration cost defined by Φ∗ in (2a);
as the secondary objective, it inherits the maximization of
non-critical throughput as in Program (1). Other than all
constraints in Program (1), Program (2) has two more sets
of constraints. Constraint (2b) enforces per-link bandwidth
capacity constraints regarding all critical commodities, and
is defined using the congestion-free definition as in Defi-
nition 5.1; note that it automatically incorporates the joint
capacity constraint of F+ as in Definition 3.2. Note that by
inheriting Constraint (1e), only the new flows of the critical
commodities are considered when sharing with the non-critical
commodities. This is because non-critical commodities have no
impact on the migration of critical commodities due to packet
prioritization. Constraint (2c) defines the per-commodity per-
link flow changes, which is used to define the primary objective
function. Constraint (2d) specifies the range of each variable.

Remark 5.1: Solving a two-layer optimization problem in-
volves two steps. In the first step, the program with the primary
objective and all constraints are optimized. Given the optimal
primary objective, in the second step, the program with the
secondary objective, all listed constraints, and an additional
optimality constraint (enforcing that the primary objective
function is equal to the obtained optimal primary objective
in the first step), is solved, producing the final solution. 2

D. Solution
Note that in the above formulation, both the link capacity con-
straint (2b) and the flow change constraint (2c) are non-linear
non-differentiable convex constraints. Non-differentiable con-
vex optimization can be solved using existing algorithms [4],

but such process can be computation-intensive and time-
consuming. Instead, we propose linearization of the above
constraints to reduce complexity.

Specifically, Constraint (2b) can be linearized by introducing
additional variables Ψi(e) ≥ 0 for Ki ∈ C+ and e ∈ E , and
replacing Constraint (2b) by the following constraints:

Ψi(e) ≥ Fi(e) , ∀Ki ∈ C+,∀e ∈ E (3a)
Ψi(e) ≥ F+

i (e) , ∀Ki ∈ C+,∀e ∈ E (3b)∑
Ki∈C+

Ψi(e) ≤ ce , ∀e ∈ E (3c)

Constraint (2c) can be linearized by replacing them with the
following constraints:

φi(e) ≥ F+
i (e)− Fi(e) , ∀Ki ∈ C+,∀e ∈ E (4a)

φi(e) ≥ Fi(e)− F+
i (e) , ∀Ki ∈ C+,∀e ∈ E (4b)

We then propose a solution to MCFP in Theorem 5.1:
Theorem 5.1: MCFP can be optimally solved in

O((3km+ k)3L) time, where m is the number of links, k is
the number of commodities, and L is the input size. 2

Proof: After linearization, the MCFP formulation (Pro-
gram (2)) is a two-layer linear program with O(3km + k)
variables. As mentioned in Remark 5.1, the problem can be
solved in two steps, both solving a linear program with the
same number of variables. Based on existing solution [47],
both programs can be solved in O((3km+ k)3L) time.

If both programs return feasible solutions, the new critical
commodity is accommodated based on the flow assignments
output by the second program; otherwise, it is rejected by the
network due to lack of sufficient bandwidth.

VI. THE CRITICAL FLOW PROBLEM: SURVIVABILITY

In this section, we further advance critical bandwidth guaran-
tees to let them persist during an arbitrary single link failure.
We propose to proactively determine the backup paths and
bandwidth against each potential link failure for the critical
commodities. In the mean time, we also minimize the impact of
bandwidth over-provisioning on the non-critical commodities,
hence achieving work conservation as well.

A. Survivable Critical Flows
To ensure survivability, each critical commodity must receive
sufficient bandwidth even when any link failure happens. We
use a pro-active mechanism to achieve this goal. Specifically,
during the accommodation of each critical commodity, in
addition to deciding its primary data paths and bandwidth
allocation, the network also decides the backup paths and
allocation against each possible link failure. During a link
failure, the affected traffic along the link will be detoured
to the paths with pre-reserved backup bandwidth, hence the
bandwidth guarantee of the commodity is secured.

Formally, we extend the network flow abstraction to the
following survivable network flow abstraction:

Definition 6.1: A survivable flow regarding commodity
K = (s, t; d) is defined by a vector of m + 1 mappings
P = (W,Re1 , · · · , Rem) (m is the number of links in E),
where W : E 7→ R∗ is a single-commodity flow for K during

6

normal operations (with no failure), while Rη : E 7→ R∗ is
a single-commodity flow for K during link η’s failure for
∀η ∈ E , such that, 1) Rη(η) = 0 for ∀η ∈ E , and 2) each
flow has flow value f(W) = d and f(Rη) = d. 2

For ease of explanation, we term the flow W as the working
flow, and Rη as the recovery flow against failure η for η ∈ E .

Definition 6.1 ensures that, during an arbitrary link failure
in the network, the critical commodity K is always guaranteed
with a single-commodity flow with throughput d as demanded.

B. Network Sharing and Work Conservation
We are interested in finding a survivable flow for each critical
commodity. We choose not to offer pro-active survivability to
non-critical commodities, instead providing them best-effort
survivability by reactively rerouting their traffic when failure
happens. Hence non-critical commodities have only the work-
ing flows, and no recovery flow, during accommodation. Fast
rerouting of non-critical traffic is out of the scope of this paper.

The reason that we distinguish between the working flows
and the recovery flows in Definition 6.1 is to enable network
sharing both between critical and non-critical commodities
and among different critical commodities. On one hand, the
recovery flow ought to be reserved dedicatedly to its critical
commodity, in order to enable immediate and congestion-free
flow recovery during a link failure; if the recovery bandwidth
is used by other critical traffic, congestion may be introduced
which affects the performance guarantee of the critical flow.
On the other hand, since network failure is a relatively rare
event, keeping the backup bandwidth idle will lead to under-
utilization of the network when no failure happens.

As a trade-off, we allow non-critical commodities to utilize
the backup bandwidth of the critical commodities during
normal operations. Due to strict packet prioritization between
critical and non-critical commodities, when traffic of a critical
commodity is detoured (due to failure) to the recovery flow uti-
lized by some non-critical commodity, the reserved bandwidth
will be preferentially dedicated to the critical traffic, fulfilling
its bandwidth guarantee. This achieves both guaranteed sur-
vivability of the critical flows and work conservation.

Based on the above, we extend the multi-commodity flow
defined in Section III to incorporate both the working flows
and the per-failure recovery flows:

Definition 6.2: A survivable multi-commodity flow, regard-
ing an ordered set of commodities K = 〈K1, . . . ,Kk〉 with
critical commodity set C and non-critical commodity set N , is
defined by another ordered set P = 〈P1, . . . , Pk〉, where for
critical commodity Ki ∈ C, Pi is a survivable flow as defined
in Definition 6.1, and for non-critical commodity Ki ∈ N , Pi
(or equivalently Wi) is a single-commodity flow as defined in
Definition 3.1, such that, all elements in P jointly satisfy the
following requirements:

1) Working capacity:
∑
Ki∈KWi(e) ≤ ce for ∀e ∈ E ;

2) Backup capacity:
∑
Ki∈C R

η
i (e) ≤ ce for ∀e, η ∈ E , e 6=

η. 2

Essentially, the capacity constraint of a conventional multi-
commodity flow (Definition 3.2) is now split into m constraints
for each link, where the first constraint concerns the working

flows of all commodities, and the other constraints concern the
recovery flows of critical commodities only.

We then extend the network state definition in Section III:
Definition 6.3: The network state at an arbitrary time is

defined by a tuple S = (G,K,P), where G is the network
topology, K is the set of currently accommodated commodities,
and P is the survivable multi-commodity flow for K. 2

C. Migration Cost

Similar to Section V, we wish to minimize the migration
cost of critical commodities as our primary objective, and
maximize the non-critical flows as our secondary objective.
While the secondary objective takes the same form as before,
the primary objective is slightly different due to the over-
provisioning of critical flows. Due to the rarity of network
failures [33], we assume that no failure happens during the
migration of network states due to arrival of a new critical
commodity. Therefore, while each existing critical commodity
Ki is allocated with a survivable flow Pi, only the old (resp.
new) working flow Wi (resp. W+

i) carries actual traffic before
(resp. after) the migration. In this case, only traffic along the
working flow needs to be migrated and incurs migration costs,
while the recovery flows only need to be updated without
actually influencing any traffic.

Note that other than the reconfiguration caused by ac-
commodation of a new critical commodity, migration also
happens when primary critical flows need to be migrated to
recovery flows due to a network failure. The migration of
the affected critical flows must not degrade other non-affected
critical flows. Congestion-free migration from primary flows to
recovery flows ensures this property. However, since network
failure is in general rare, we do not consider such migration
in the computation of the migration cost.

D. Problem Formulation

Definition 6.4: Given the current (old) network state S =
(G,K,P), and a new critical flow K+, the critical flow
problem with survivability requirement, SCFP(G,K,P,K+),
seeks a new network state S′ = (G,K+,P+), such that 1) P
satisfies the survivability guarantee of all critical commodities
as defined in Definition 6.2, 2) the working flow Wi of each
critical commodity Ki ∈ C can be migrated from S to S′

without congestion as defined in Definition 5.1, 3) at any
failure η ∈ E , each critical flow can be migrated to its re-
covery flow without congestion, 4) the solution minimizes the
total migration cost as primary objective, and 5) the solution
maximizes the total throughput of non-critical commodities
during normal operations as secondary objective. 2

A two-layer formulation is proposed for this problem:

7

Program (5): SCFP(G,K,P,K+)

Variables:
W+
i (e) new working flow of Ki ∈ K+ on e

R+,η
i (e) recovery flow of Ki ∈ C+ on e when η fails

(e 6= η)
φi(e) flow change of Ki ∈ C+ on link e
f+
i flow value of Ki ∈ N

min Φ∗ =
∑

Ki∈C+

∑
e∈E

πeφi(e) (primary) (2a)

max
∑
Ki∈N

f+
i (secondary) (1a)

s.t. ∀Ki ∈ K+,∀v ∈ V \ {si, ti} :∑
e∈in(v)

W+
i (e)−

∑
e∈out(v)

W+
i (e) = 0; (5a)

∀Ki ∈ C+ :∑
e∈in(ti)

W+
i (e)−

∑
e∈out(ti)

W+
i (e) = di; (5b)

∀Ki ∈ N :∑
e∈in(ti)

W+
i (e)−

∑
e∈out(ti)

W+
i (e) = f+

i ; (5c)

∀Ki ∈ C+,∀η ∈ E ,∀v ∈ V \ {si, ti} :∑
e∈in(v)
e 6=η

R+,η
i (e)−

∑
e∈out(v)
e 6=η

R+,η
i (e) = 0; (5d)

∀Ki ∈ C+,∀η ∈ E :∑
e∈in(ti)
e 6=η

R+,η
i (e)−

∑
e∈out(ti)
e 6=η

R+,η
i (e) = di; (5e)

∀e ∈ E :
∑

Ki∈C+
max{Wi(e),W

+
i (e)} ≤ ce; (5f)

∀e ∈ E ,∀η ∈ E , e 6= η :∑
Ki∈C+

max{W+
i (e), R+,η

i (e)} ≤ ce; (5g)

∀e ∈ E :
∑

Ki∈K+

W+
i (e) ≤ ce; (5h)

∀Ki ∈ C+,∀e ∈ E : φi(e) = |W+
i (e)−Wi(e)|; (5i)

∀Ki ∈ K+,∀e, η ∈ E , e 6= η :

W+
i (e), R+,η

i (e), φi(e), f
+
i ≥ 0. (5j)

Explanation: The two objectives (2a) and (1a) are essentially
the same as in the MCFP formulation (Program (2)). Con-
straints (5a) and (5d) define the flow conservation for both
working flows and recovery flows during each link failure η
per-critical commodity. Similarly, Constraints (5b) and (5e)
define the corresponding flow values to strictly satisfy the crit-
ical commodities’ bandwidth demands. Constraint (5c) further
defines the flow values of non-critical flows. For congestion-
free migration, two scenarios are considered in the formulation.

Constraint (5f) defines the congestion-free migration from the
old working flows to the new working flows, for each critical
commodity. Constraint (5g) further defines the congestion-free
migration from the working flows to the recovery flows during
an arbitrary link failure η. This ensures that, although different
critical commodities may share capacity on the same link for
backup in different failure scenarios, they cannot share during
the same failure; further, enough capacity needs to be reserved
for congestion-free migration during failure. Constraint (5h)
further defines the capacity constraints over both critical and
non-critical commodities. As non-critical flows do not affect
the migration of critical flows in any scenario, only the new
working flows are considered. Constraint (5i) defines flow
changes using working flows only. Finally, Constraint (5j) are
the non-negativity constraints.

A solution to SCFP is proposed in the following theorem:

Theorem 6.1: SCFP can be optimally solved in O((km2 +
2km+ k)3L) time, where m is the number of links, k is the
number of commodities, and L is the input size. 2

Proof: To solve the SCFP formulation (Program (5)), we
still apply the linearization technique proposed in Section V.
After linearization, Program (5) is a two-layer linear program
with O(km2 + 3km + k) variables. Using the two-layer
optimization technique mentioned in Section V, we can solve it
in O((km2+3km+k)3L) time based on existing solution [47].

E. Faster Heuristic for SCFP

Although the optimal formulation of SCFP can be solved
in polynomial time, it has Ω(m) more variables than the
formulation of CFP and MCFP in the worst case. Conse-
quently, it has Ω(m3) times higher worst-case time complexity
than CFP and MCFP. This will largely hinder its application
in most practical settings. In this subsection, we propose a
faster heuristic for SCFP that has the same asymptotic time
complexity as the solutions to CFP and MCFP.

Observe that in the SCFP formulation (Program (5)), the
increase in asymptotic formulation size is due to the per-
failure provisioning of backup network flows for each critical
commodity. While this enables the finest-grained allocation of
backup bandwidth, in practice each critical flow may only be
affected by a relatively small portion of link failures in the
network, hence per-link provisioning may be an overkill in
many cases. To this end, we propose to aggregate the backup
bandwidth for all possible link failures for a single round of
allocation, with each link failure being resolved using a portion
of the backup allocation. We propose the following heuristic
formulation for SCFP:

8

Program (6): SCFP-Heuristic(G,K,P,K+)

Variables:
W+
i (e) new working flow of Ki ∈ C+ on e

Q+
i (e) reserved flow of Ki ∈ C+ on e

φi(e) flow change of Ki ∈ C+ on link e
∆i reserved backup flow value of Ki ∈ C+

f+
i flow value of Ki ∈ N

min Φ∗ =
∑

Ki∈C+

∑
e∈E

πeφi(e) (primary) (2a)

max
∑
Ki∈N

f+
i (secondary) (1a)

s.t. (5a), (5b), (5c), (5f), (5h), (5i)
∀Ki ∈ C+,∀v ∈ V \ {si, ti} :∑

e∈in(v)

Q+
i (e)−

∑
e∈out(v)

Q+
i (e) = 0; (6a)

∀Ki ∈ C+ :∑
e∈in(ti)

Q+
i (e)−

∑
e∈out(ti)

Q+
i (e) = di + ∆i; (6b)

∀Ki ∈ C+,∀e ∈ E : Q+
i (e) ≤ ∆i; (6c)

∀e ∈ E :
∑

Ki∈C+
Q+
i (e) ≤ ce; (6d)

∀Ki ∈ C+,∀e ∈ E : W+
i (e) ≤ Q+

i (e); (6e)
∀Ki ∈ K+,∀e ∈ E :

W+
i (e), Q+

i (e), φi(e),∆i, f
+
i ≥ 0. (6f)

Explanation: Program (6) generally has a similar form as
Programs (5). The difference is that the the per-link failure
recovery flows (defined by R+,η

i (e)) are aggregated into a
single reserved single-commodity flow (defined by Q+

i (e))
for each critical commodity Ki. In addition, a new variable
∆i is introduced for each critical commodity Ki, which
represents the additional flow value reserved for Ki beyond
the bandwidth requirement di, as defined in Constraint (6b).
To ensure survivability, we then constrain that the reserved
flow assignment Q+

i (e) of Ki on each link e cannot exceed
the additional flow value ∆i, as in Constraint (6c). Further, we
bound the working flow W+

i (e) using each critical commod-
ity’s reserved flow Q+

i (e), as in Constraint (6e). The central
idea of Programs (6) is that, during arbitrary link failure, each
critical commodity Ki will only lose at most ∆i in its reserved
flow by Constraint (6c), hence the remaining reserved flow is
at least di. The recovery flow R+,η

i against each possible link
failure η can be computed for each critical commodity Ki with
its reserved flow Q+

i , using simple network flow algorithms.
We use the same method as in previous sections to solve

the SCFP-Heuristic formulation (Program (6)):
Theorem 6.2: The SCFP-Heuristic formulation (Pro-

gram (6)) can be solved in O((4km + 2k)3L) time, where
m is the number of links, k is the number of commodities,
and L is the input size. 2

Proof: Proof follows from the proof of Theorem 6.1.

Based on Theorem 6.2, the worst-case time complexity
for solving the SCFP-Heuristic formulation (Program (6))
is asymptotically the same as that of the solutions for CFP
and MCFP, and is must faster than the worst-case complexity
for solving the optimal the optimal SCFP formulation (Pro-
gram (5)). It is notable that Program (6) is actually a relaxation
of Program (5). Therefore, the heuristic is not guaranteed to
find an optimal solution when one exists. Example of such
instances can be constructed, but is not shown due to space
limit. On the other hand, it is more practical than the proposed
optimal SCFP solution due to its low time complexity. As
will be shown in the next section, the actual performance of
this heuristic is comparable to the proposed optimal SCFP
solution, with several-orders lower running time in practice.

F. Survivability Discussions
Partial survivability: Providing full survivability against all
possible link failures may result in high resource consump-
tion and algorithm time complexity, as shown in the next
section. One practical approach is to provide partial sur-
vivability against a designated set of key links, or links
with higher failure probabilities than others. Both SCFP and
SCFP-Heuristic can incorporate this capability with minor
modifications. Specifically, for SCFP, the only change to
support partial survivability is to only define the recovery flows
R+,η
i (e) for those designated links η to be protected. This

could drastically reduce the size of the formulation, and hence
the time complexity for solving the formulation, if only a small
set of links are considered. Similarly, for SCFP-Heuristic,
Constraint (6c) can be modified to be defined on only the
designated links.
Multi-failure survivability: Both SCFP and SCFP-Heuristic
can also be extended to cover multiple simultaneous failure. In
SCFP, we define recovery flows R+,η1,...,ησ

i for any combina-
tion of σ link failures (η1, . . . , ησ). Note that this automatically
covers any number of link failures less than σ. In SCFP-
Heuristic, instead of defining Constraint (6c) for each single
link failure η, we define it as

∑
e∈(η1,...,ησ)Q

+
i ≤ ∆i for any

combination of σ link failures (η1, . . . , ησ). Note that covering
multiple simultaneous failures inevitably incurs time complex-
ity exponential to the number of failures. Hence this should
be combined with the aforementioned partial survivability to
only protect from key combinations of link failures.

VII. PERFORMANCE EVALUATION

A. Experiment Settings
To evaluate the performance of our proposed model and algo-
rithms, we carried out simulations on both well-known network
topologies and randomly generated topologies. Three well-
known topologies were used: the NSFNet topology with 14
nodes and 21 undirected links, the ItalyNet topology with 14
nodes and 29 undirected links, and the ARPANet topology with
20 nodes and 32 undirected links [1]. We assumed the links
had duplex capability, and hence divided each undirected link
into two directed links in opposite directions with independent
available capacities. For random topologies, we generated

9

graphs based on the Waxman model [39], with 15 nodes by
default, and α = 0.5 and β = 0.6 in the Waxman model. Link
capacities were uniformly drawn from [100, 1000] Mbps by
default; migration cost is set to 1 for every link.

Both online and offline experiments were carried out. For
each online experiment, we generated 500 commodity requests
(with randomly chosen source and destination nodes) which
arrived in a Poisson process with arrival interval mean of
25 time units and lifetime mean of 1000 time units by
default. Each request had equal probability of being a critical
commodity or a non-critical commodity, where the bandwidth
demand of each critical commodity was uniformly drawn from
[30, 300] Mbps by default. The proposed programs were used
for both critical and non-critical commodities, upon both their
arrival and departure; however, at the arrival of a non-critical
commodity or the departure of any commodity, the programs
were modified to involve only the non-critical commodities,
while the rest critical commodities were untouched in order
to minimize critical flow migration. We used the algorithms
to process each incoming commodity, reserved bandwidth if it
were accepted, and released the bandwidth when it left.

For each offline experiment, we applied a load in the
network based on a specified load factor λ ∈ [0, 1]. Specif-
ically, for each link l in the network, we randomly made
λl ∈ [0, 2λ]∩ [2λ− 1, 1] of its capacity unavailable (the range
is bounded by [0, 1] and centered at λ). In offline scenarios,
all generated requests were critical commodities with demand
uniformly drawn from [30, 300] Mbps by default. For each
request, we used the same network state information to test
it under all compared algorithms; hence we did not reserve
resources after the request was accepted.

Four online algorithms were evaluated against each other.
CFA is the online algorithm that solves CFP (Program (1))
at the arrival or departure of each commodity, where no
transient network state is considered. MCFA is the algorithm
by solving MCFP (Program (2)), where network reconfigu-
ration is considered for bandwidth guarantee. SCFA is the
optimal algorithm that solves SCFP (Program (5)), while
SCFH is the heuristic algorithm that solves SCFP-Heuristic
(Program (6)). Four variants were also involved, namely
SCFA-NS, SCFH-NS, SCFA-P, and SCFH-P. SCFA-NS and
SCFH-NS correspond to the non-sharing versions of SCFA
and SCFH, respectively. In the non-sharing versions, non-
critical commodities cannot share the backup bandwidth of
critical commodities even when no failure happens. We used
them to evaluate the work conserving property of our proposed
algorithms. SCFA-P and SCFH-P correspond to the versions
of SCFA and SCFH that consider partial survivability, respec-
tively, as shown in Section VI-F.

We evaluated the performance of our algorithms using the
following metrics. The critical acceptance ratio measures
the number of accepted critical commodities over all critical
commodity requests (note that non-critical commodities do not
need to be accepted and can always stay in the system in order
to utilize spare bandwidth left by the critical commodities). It
reflects an algorithm’s capability to accept as many critical
commodities given their various bandwidth requirement. The
non-critical sum throughput measures the average total

throughput of non-critical flows throughout time, and is used
to validate the effectiveness of our work conserving design.
The running time measures the average computation time of
each algorithm per commodity request.

To comprehensively evaluate algorithm performance, we
varied different parameters in each experiment, including the
network size (both number of nodes and links in the random
graph case), ratio of critical commodities over all commodities,
average bandwidth demand of critical commodities, and the
key link ratio (the number of key links over all links in the
network, where only key links are protected by the partial-
survivability algorithms). Each experiment was repeated for 20
times under the same experiment setting, and the result was
averaged over all runs. All experiments were conducted on a
Ubuntu Linux PC with Quad-Core 3.4GHz CPU and 16GB
memory.

B. Evaluation Results

NSF Italy ARPA
Network Topology

0

20

40

60

80

100

C
r
i
t
.

a
c
c
.

r
a
t
i
o

(
%
)

CFA

MCFA

SCFA

SCFH

Fig. 2: Acceptance ratio on different topologies.

Figs. 2–4 show the results of our online experiments. Fig. 2
shows the acceptance ratio of the four algorithms with the
well-known topologies. We can observe that while enforcing
migratability requirement (MCFA) only imposes minor impact
on the acceptance ratio, enforcing survivability requirement
(SCFA and SCFH) has a much larger impact, with respect to
the basic case where no criticality is enforced during transient
network states (CFA). Also observe that the heuristic solution
SCFH indeed has some performance degradation compared to
the per-critical commodity optimal solution SCFA, especially
on networks with larger sizes (ItalyNet and ARPANet), but the
difference is minor.

Fig. 3 shows the acceptance ratio with random topologies,
where we varied the topology size (number of nodes), connec-
tivity (number of links, determined by the α and β parameters
in the Waxman model), ratio of critical commodities, and
the per-critical commodity average bandwidth demand, in
Figs. 3(a)–3(d) respectively. The trends of the curves match
the intuition, where acceptance ratio would increase with
increasing number of nodes or connectivity, or decreasing
number of critical commodities or per-critical commodity
bandwidth demand. On the other hand, we can observe the
similar comparison among the four algorithms, where MCFA
has only slightly lower acceptance ratio than CFA, but SCFA
and SCFH have much lower acceptance ratios, due to the more
stringent requirement on the network resources for backup

10

(a) (b) (c) (d)

Fig. 3: Acceptance ratio vs. (a) # nodes, (b) connectivity, (c) critical commodity ratio, and (d) average bandwidth demand.

(a) (b) (c) (d)

Fig. 4: Average running time vs. (a) # nodes, (b) connectivity, (c) critical commodity ratio, and (d) average bandwidth demand.

reservation. This basically suggests that enforcing survivability
requirement is a much harder task, and thus should reflect
higher prices to the requested users in the perspective of the
network operator. Also observe that the acceptance loss of our
proposed heuristic SCFH is still minor compared to the per-
commodity optimal solution SCFA.

Fig. 4 shows the corresponding per-commodity running
time of the algorithms with random topologies. Basically the
running time of every algorithm increases with network sizes
(nodes and links) and the number of critical commodities. We
notice that enforcing migratability requirement (MCFA) does
not incur much computation overhead compared to the ba-
sic case (CFA). However, enforcing survivability requirement
using the (per-commodity) optimal solution (SCFA) incurs a
much higher computation overhead, as its running time can be
several orders higher than the former two. On the other hand,
our proposed heuristic solution (SCFH) incurs a much lower
computation overhead (several orders lower) than SCFA, only
slightly higher than the former two. For example, the SCFA
algorithm run on a network with 21 nodes is about 8 times
slower than the SCFH algorithm run on a network with 40
nodes on average. This difference in running time will even
increase with larger network sizes due to the larger sizes of
SCFA LPs. Combined with its near-optimal performance in
terms of acceptance ratio, SCFH is much more suitable for
practical use than SCFA, the per-commodity optimal solution.

Fig. 5 shows experiments validating the effectiveness of our
work conserving design. We compare both SCFA and SCFH
to their non-sharing versions, namely SCFA-NS and SCFH-
NS respectively. In the non-sharing versions, both algorithms

NSF Italy ARPA Waxman
Network Topology

0
1000
2000
3000
4000
5000
6000
7000
8000

N
o
n
-
c
r
i
t
.

s
u
m

t
'
p
u
t

(
M
b
p
s
)

SCFA

SCFH

SCFA-NS

SCFH-NS

Fig. 5: Non-critical throughput with sharing vs. non-sharing.

do not allow non-critical commodities to share bandwidth
allocated to the recovery flows of critical commodities even
when no failure happens; the non-sharing versions thus accept
the same set of critical commodities as their sharing opponents
respectively, yet result in less bandwidth to be used by non-
critical commodities. We can see that sharing greatly promotes
non-critical throughput compared to non-sharing regarding
both algorithms. Also note that (non-)sharing has more impact
on the heuristic solution than on the optimal algorithm, because
the heuristic solution generally results in more backup resource
reserved for critical commodities. This confirms the effective-
ness of our work conserving design. Note that comparison
of non-critical throughput between SCFA (resp. SCFA-NS)
and SCFH (resp. SCFH-NS) is meaningless, as they accepts
different sets of critical commodities in general.

Fig. 6 further shows experiment results that evaluate partial
survivability versus full survivability. In the experiments we

11

(b) Running time(a) Acceptance ratio

Fig. 6: Acceptance ratio and running time vs. key link ratio.

varied the key link ratio, i.e., the portion of links over all links
which are protected by our partial-survivability algorithms
SCFA-P and SCFH-P. We randomly selected a subset of links
to protect based on the key link ratio. From Fig. 6(a), we
can see that by protecting only a subset of the overall links,
the acceptance ratio can be decently improved compared to
protecting against every possible link failure. Such improve-
ments degrade when the number of links we need to protect
increases. Furthermore, from Fig. 6(b), the time complexity for
the optimal partial-survivability algorithm (SCFA-P) is much
lower than the optimal full-survivability algorithm SCFA.
When the number of key links increases, time complexity
of SCFA-P also increases. This is due to the fact that the
time complexity for solving LPs increases with the number of
variables (program size), which grows linearly with the number
of links to protect in SCFA and SCFA-P. On the other hand,
for the heuristic algorithms SCFH and SCFH-P, we observe
the opposite phenomenon: partial survivability even increases
the time complexity. This is because SCFH-P accepts more
critical commodities than SCFH as shown in Fig. 6(b). In
our implementation, each accepted critical commodity involves
solving three LPs in total, two for accommodation when
it arrives and one for adjustment when it leaves; on the
contrary, if a critical commodity is rejected, only one LP is
solved: it will be rejected immediately after solving the first
LP due to infeasibility of the corresponding program. Since
given the same network state, both SCFH and SCFH-P take
approximately the same amount of time to solve a single LP
(as they have the same program sizes), the algorithm with
higher acceptance ratio inevitably incurs more average time
for solving each instance. This is in contrast to the comparison
between SCFA and SCFA-P, which have different program
sizes. Due to the high complexity of solving LPs regarding
the program sizes [47], the excessive time for solving each LP
with a larger size in SCFA dominates the time incurred for
solving more LPs each with a smaller size in SCFA-P, which
leads to the former being much slower than the latter in all
experiments.

The above online experiments cannot verify the optimality
of SCFA compared to SCFH, although the former outperforms
the latter in all results shown. Hence we further conducted
offline experiments to specifically verify the optimality of
SCFA for solving the per-commodity SCFP problem, and the
results are shown in Fig. 7.

Fig. 7 shows the acceptance ratio on both well-known and
random topologies, where we varied the load factor λ from
0.2 to 1.0. Since the results are akin for SCFA and SCFH
in almost all cases, we specifically list all the acceptance
ratios on the corresponding bars. Two things can be observed.
First, SCFH never performs better than SCFA in any case,
which aligns with the optimality of the latter. Second, the
sub-optimality of SCFH is minimal; almost no performance
degradation can be observed in the offline experiments. This
further illustrates the effectiveness of our proposed heuristic
solution. As for the running time, again SCFA is several orders
slower than SCFH; since the comparison is similar to that
shown in Fig. 4, the results are not displayed in this paper.

Our findings are summarized as follows:
• Enforcing bandwidth criticality during transient network

states (network reconfiguration and failures) indeed incurs
performance overhead: in terms of both less accepted
critical commodities, and increased computation time.

• While enforcing migratability requirement incurs only
minimal overhead, enforcing survivability requirement
can be much more resource- and time-intensive, hence
should be used with caution by the network operators.

• When enforcing survivability requirement is necessary, it
is more suitable to employ our heuristic solution than the
per-critical commodity optimal solution, due to both the
comparable performance (in terms of acceptance ratio)
and the much better time-efficiency of the heuristic.

• Another way for improving scalability is to employ partial
survivability, where only a small subset of key links are
to be protected instead of all the links in the network.
This can both reduce resource overhead (thus increase
acceptance ratio), and greatly reduce time complexity for
the optimal algorithm.

VIII. CONCLUSIONS

In this paper, we studied how to provide bandwidth guarantee
to network commodities during transient network states. We
first proposed the concept of critical flow, for which the
commodity explicitly specifies its bandwidth requirement, and
the network states during which the bandwidth demand must
be satisfied, namely its criticality requirement. We further
studied the problem of accommodating a newly arrived crit-
ical commodity, given the current set of active flows in the
network. Starting from the basic scenario where no transient
network state is considered, we progressively built problem
formulations and solutions for accommodating critical com-
modities with migratability requirement, and with survivability
requirement. We further proposed a heuristic solution for ac-
commodating critical commodities with survivability require-
ment, in order to reduce time complexity over the optimal
solution. We conducted extensive simulation experiments on
well-known topologies and random topologies with randomly
generated requests. The results showed that while providing
bandwidth guarantee for transient network states indeed im-
proves performance received by each accepted commodity,
it inevitably consumes more bandwidth and increases com-
putation time, and hence tampers the network’s ability in

12

(a) NSFNet (b) ItalyNet (c) ARPANet (d) Random topology

Fig. 7: Offline acceptance ratio on (a) NSFNet, (b) ItalyNet, (c) ARPANet, and (d) random topologies.

serving more commodities. We also observed that survivability
is much more expensive than migratability, in terms of both
resource usage and computation time. On the other hand,
our proposed heuristic can achieve comparable performance
to, but is several-orders more time-efficient than, the per-
commodity optimal survivable solution. As for future work
along this line, other transient network states can be considered
to further improve network performance, including multiple
simultaneous failures, traffic dynamics, topology dynamics,
bursty traffic, etc.

REFERENCES

[1] “Reference Network Topologies.” URL: http://www.av.it.pt/anp/on/
refnet2.html

[2] S. Acharya, B. Gupta, P. Risbood, and A. Srivastava, “PESO: Low
Overhead Protection for Ethernet over SONET Transport,” in Proc.
IEEE INFOCOM, 2004, pp. 165–175.

[3] R. Banner and A. Orda, “The Power of Tuning: A Novel Approach for
the Efficient Design of Survivable Networks,” IEEE/ACM Trans. Netw.,
vol. 15, no. 4, pp. 737–749, 2007.

[4] S. Boyd, L. Xiao, and A. Mutapcic, “Subgradient Methods,” 2003.
URL: https://web.stanford.edu/class/ee392o/subgrad method.pdf

[5] S. Brandt, K.-T. Forster, and R. Wattenhofer, “On Consistent Migration
of Flows in SDNs,” in Proc. IEEE INFOCOM, 2016.

[6] S. Chen and K. Nahrstedt, “An Overview of Quality of Service Routing
for Next-Generation High-Speed Networks: Problems and Solutions,”
IEEE Netw., vol. 12, no. 6, pp. 64–79, 1998.

[7] B. Fortz and M. Thorup, “Internet Traffic Engineering by Optimizing
OSPF Weights,” in Proc. IEEE INFOCOM, 2000, pp. 519–528.

[8] L. Fu, X. Wang, and P. R. Kumar, “Are We Connected? Optimal De-
termination of Source-Destination Connectivity in Random Networks,”
IEEE/ACM Trans. Netw., vol. PP, no. 99, pp. 751–764, 2016.

[9] X. Fu, Z. Xu, Q. Peng, L. Fu, and X. Wang, “Complexity Vs.
Optimality: Unraveling Source-Destination Connection in Uncertain
Graphs,” in Proc. IEEE INFOCOM, 2017.

[10] R. Hassin, “Approximation Schemes for the Restricted Shortest Path
Problem,” Math. Oper. Res., vol. 17, no. 1, pp. 36–42, feb 1992.

[11] J. He, Jiayueand Rexford, “Toward Internet-Wide Multipath Routing,”
IEEE Netw., vol. 22, no. 2, pp. 16–21, mar 2008.

[12] P.-H. Ho, J. Tapolcai, and T. Cinkler, “Segment Shared Protection in
Mesh Communications Networks With Bandwidth Guaranteed Tun-
nels,” IEEE/ACM Trans. Netw., vol. 12, no. 6, pp. 1105–1118, dec 2004.

[13] P.-H. Ho, J. Tapolcai, and H. Mouftah, “On Achieving Optimal Sur-
vivable Routing for Shared Protection in Survivable Next-Generation
Internet,” IEEE Trans. Reliab., vol. 53, no. 2, pp. 216–225, jun 2004.

[14] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving High Utilization with Software-Driven
WAN,” in Proc. ACM SIGCOMM, 2013, pp. 15–26.

[15] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer, “Dynamic Scheduling of Network
Updates,” in Proc. ACM SIGCOMM, 2014, pp. 539–550.

[16] M. Johansson and A. Gunnar, “Data-driven Traffic Engineering: Tech-
niques, Experiences and Challenges,” in Proc. IEEE ICBCNS, 2006.

[17] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the
Tightrope: Responsive Yet Stable Traffic Engineering,” in Proc. ACM
SIGCOMM, 2005, pp. 253–264.

[18] K. Kar, M. Kodialam, and T. Lakshman, “Routing Restorable Band-
width Guaranteed Connections Using Maximum 2-Route Flows,”
IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 772–781, oct 2003.

[19] M. Kodialam and T. Lakshman, “Dynamic Routing of Restorable
Bandwidth-Guaranteed Tunnels Using Aggregated Network Resource
Usage Information,” IEEE/ACM Trans. Netw., vol. 11, no. 3, pp. 399–
410, jun 2003.

[20] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter, “Traffic
Engineering with Forward Fault Correction,” in Proc. ACM SIGCOMM,
2014, pp. 527–538.

[21] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. Maltz,
“zUpdate: Updating Data Center Networks with Zero Loss,” in Proc.
ACM SIGCOMM, 2013, pp. 411–422.

[22] X. Liu, S. Mohanraj, M. Pioro, and D. Medhi, “Multipath Routing From
a Traffic Engineering Perspective: How Beneficial Is It?” in Proc. IEEE
ICNP, 2014, pp. 143–154.

[23] D. H. Lorenz and D. Raz, “A Simple Efficient Approximation Scheme
for the Restricted Shortest Path Problem,” Oper. Res. Lett., vol. 28,
no. 5, pp. 213–219, jun 2001.

[24] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innova-
tion in Campus Networks,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 2, pp. 69–74, mar 2008.

[25] M. Medard, S. Finn, R. Barry, and R. Gallager, “Redundant Trees
for Preplanned Recovery in Arbitrary Vertex-Redundant or Edge-
Redundant Graphs,” IEEE/ACM Trans. Netw., vol. 7, no. 5, pp. 641–652,
1999.

[26] T. Mizrahi, O. Rottenstreich, and Y. Moses, “TimeFlip: Scheduling
Network Updates with Timestamp-Based TCAM Ranges,” in Proc.
IEEE INFOCOM, 2015, pp. 2551–2559.

[27] T. Mizrahi, E. Saat, and Y. Moses, “Timed Consistent Network Up-
dates,” in Proc. ACM SOSR, 2015.

[28] L. Muscariello, D. Perino, and D. Rossi, “Do Next Generation Networks
Need Path Diversity?” in Proc. IEEE ICC, 2009.

[29] S. Ramamurthy and B. Mukherjee, “Survivable WDM Mesh Networks,
Part I-Protection,” in Proc. IEEE INFOCOM, 1999, pp. 744–751 vol.2.

[30] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for Network Update,” in Proc. ACM SIGCOMM, 2012,
pp. 323–334.

[31] S. Subramaniam and D. Zhou, “Survivability in Optical Networks,”
IEEE Netw., vol. 14, no. 6, pp. 16–23, 2000.

[32] M. Suchara, D. Xu, R. Doverspike, D. Johnson, and J. Rexford, “Net-

13

http://www.av.it.pt/anp/on/refnet2.html
http://www.av.it.pt/anp/on/refnet2.html
https://web.stanford.edu/class/ee392o/subgrad_method.pdf

work Architecture for Joint Failure Recovery and Traffic Engineering,”
ACM SIGMETRICS Perform. Eval. Rev., vol. 39, no. 1, pp. 97–108, jun
2011.

[33] D. Turner, K. Levchenko, A. C. Snoeren, and S. Savage, “California
Fault Lines: Understanding the Causes and Impact of Network Failures,”
in Proc. ACM SIGCOMM, 2010, p. 315.

[34] J.-P. Vasseur, M. Pickavet, and P. Demeester, Network Recovery:
Protection and Restoration of Optical, SONET-SDH, IP, and MPLS,
2004.

[35] C. Villamizar, “Use of Multipath with MPLS and MPLS Transport
Profile (MPLS-TP),” 2012. URL: https://tools.ietf.org/html/rfc7190

[36] S. Vissicchio and L. Cittadini, “FLIP the (Flow) Table: Fast Lightweight
Policy-Preserving SDN Updates,” in Proc. IEEE INFOCOM, 2016.

[37] N. Wang, K. Ho, G. Pavlou, and M. Howarth, “An Overview of Routing
Optimization for Internet Traffic Engineering,” IEEE Commun. Surv.
Tutorials, vol. 10, no. 1, pp. 36–56, 2008.

[38] Z. Wang and J. Crowcroft, “Quality-of-service Routing for Supporting
Multimedia Applications,” IEEE J. Sel. Areas Commun., vol. 14, no. 7,
pp. 1228–1234, 1996.

[39] B. M. Waxman, “Routing of Multipoint Connections,” IEEE J. Sel.
Areas Commun., vol. 6, no. 9, pp. 1617–1622, 1988.

[40] X. Xiao, A. Hannan, B. Bailey, and L. Ni, “Traffic Engineering with
MPLS in the Internet,” IEEE Netw., vol. 14, no. 2, pp. 28–33, 2000.

[41] D. Xu, Y. Xiong, C. Qiao, and G. Li, “Failure Protection in Layered
Networks with Shared Risk Link Groups,” IEEE Netw., vol. 18, no. 3,
pp. 36–41, may 2004.

[42] G. Xue, L. Chen, and K. Thulasiraman, “Quality-of-service and Quality-
Of-Protection Issues in Preplanned Recovery Schemes Using Redundant
Trees,” IEEE J. Sel. Areas Commun., vol. 21, no. 8, pp. 1332–1345, oct
2003.

[43] G. Xue, R. Gottapu, X. Fang, D. Yang, and K. Thulasiraman,
“A Polynomial-Time Algorithm for Computing Disjoint Lightpath
Pairs in Minimum Isolated-Failure-Immune WDM Optical Networks,”
IEEE/ACM Trans. Netw., vol. 22, no. 2, pp. 470–483, apr 2014.

[44] G. Xue, W. Zhang, J. Tang, and K. Thulasiraman, “Polynomial
Time Approximation Algorithms for Multi-Constrained QoS Routing,”
IEEE/ACM Trans. Netw., vol. 16, no. 3, pp. 656–669, jun 2008.

[45] J. Yallouz and A. Orda, “Tunable QoS-Aware Network Survivability,”
IEEE/ACM Trans. Netw., vol. 25, no. 1, pp. 139–149, feb 2017.

[46] J. Yallouz, O. Rottenstreich, and A. Orda, “Tunable Survivable Span-
ning Trees,” IEEE/ACM Trans. Netw., vol. 24, no. 3, pp. 1853–1866,
jun 2016.

[47] Y. Ye, “An O(n3L) Potential Reduction Algorithm for Linear Pro-
gramming,” Math. Program., vol. 50, no. 1, pp. 239–258, mar 1991.

[48] W. Zhang, J. Tang, C. Wang, and S. de Soysa, “Reliable Adaptive Mul-
tipath Provisioning with Bandwidth and Differential Delay Constraints,”
in Proc. IEEE INFOCOM, 2010.

Ruozhou Yu (Student Member 2013) received his
B.S. degree from Beijing University of Posts and
Telecommunications, Beijing, China, in 2013. Cur-
rently he is a Ph.D student in the School of Comput-
ing, Informatics, and Decision Systems Engineering
at Arizona State University. His research interests
include network virtualization, software-defined net-
working, cloud and data center networks, edge com-
puting and internet-of-things, etc.

Guoliang Xue (Member 1996, Senior Member 1999,
Fellow, 2011) is a professor of Computer Science
and Engineering at Arizona State University. He
received the PhD degree in Computer Science from
the University of Minnesota in 1991, the MS degree
in Operations Research from Qufu Normal Univer-
sity in 1984, and the BS degree in Mathematics
from Qufu Normal University in 1981. His research
interests span the areas of Quality of Service provi-
sioning, network security and privacy, crowdsourcing
and network economics, RFID systems and Internet

of Things, smart city and smart grids. He has published over 280 papers
in these areas, many of which in top conferences such as ICNP, INFO-
COM, MOBICOM, MOBIHOC, NDSS and top journals such as IEEE/ACM
Transactions on Networking, IEEE JSAC, IEEE TMC. He was a keynote
speaker at IEEE LCN’2011 and ICNC’2014. He was a TPC Co-Chair of
IEEE INFOCOM’2010 and a General Co-Chair of IEEE CNS’2014. He
has served on the TPC of many conferences, including ACM CCS, ACM
MOBIHOC, IEEE ICNP, and IEEE INFOCOM. He served on the editorial
board of IEEE/ACM Transactions on Networking and the Computer Networks
Journal. He serves as the Area Editor of IEEE Transactions on Wireless
Communications, overseeing 13 editors in the Wireless Networking area. He
is an IEEE Fellow, and the VP-Conferences of the IEEE Communications
Society.

Xiang Zhang (Student Member 2013) received his
B.S. degree from University of Science and Technol-
ogy of China, Hefei, China, in 2012. Currently he is a
Ph.D student in the School of Computing, Informat-
ics, and Decision Systems Engineering at Arizona
State University. His research interests include net-
work economics and game theory in crowdsourcing
and cognitive radio networks.

14

https://tools.ietf.org/html/rfc7190

