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Geo-Distributed Services & Edge Computing
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Time-Varying Demands in Geo-Distributed Apps
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Patterns in Real-world Datasets
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Dartmouth College Wireless APs
• Top 10 APs with highest loads
• Load: avg. # devices / hour
• Averaged over a year (9/2002-9/2003)

NYC Yellow Taxi 2018
• Top 10 zones w/ most drop-offs
• Load: avg. # passenger drop-offs
• Averaged over a year

Observation 1: Non-i.i.d. demand distributions across time & locations.

Observation 2: Repeating / seasonal patterns in temporal domain.



Resource Provisioning for Edge Services
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Example App

❑ Inputs: edge network (edge nodes), app/service, demands

❑ Outputs: 1) app/service hosting, 2) traffic routing / engineering

❑ Studied in the literature, e.g. [1][2], …

❑ … but with static inputs!

[1] Yu, R., Xue, G., & Zhang, X. (2018). Application Provisioning in Fog Computing-enabled Internet-of-Things: 
A Network Perspective. Proc. IEEE INFOCOM, 1–9.

[2] Yu, R., Xue, G., & Zhang, X. (2019). Provisioning QoS-Aware and Robust Applications in Internet of Things: 
A Network Perspective. IEEE/ACM Transactions on Networking, 27(5), 1931–1944



Methodology Overview
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App Demands
Time-varying, geo-distributed

Edge Network
Topology, time-varying delays

Abstract System Model
• Time-varying model
• System risk model (CVaR)
• Three-stage stochastic optimiz.

Optimization Framework
• Nested Bender decomposition
• Efficient subproblem solving

Service Deployment
Global fixed decisions

Inputs:

System-wide

Optimization:

Outputs:
Net Provisioning

Per-time slot decisions
Net Estimation

Per-realization decisions
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System Model: Involved Parties
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ESP

Edge Service Provider
• Submits service requests

• Measures and predicts demands 
• Dynamically balances load

Example App

NM

Network Manager
• Manages edge network

• Decides network policies
• Provisions network resources (bw)

ECM
Edge Computing Manager(s)

• Manages edge nodes & resources
• Decides computing costs



Edge Network: A General Model

❑ Challenge: heterogeneous network environments

❑ Model: general directed graph G=(N, L), with edge nodes H and APs A

❖ Weights: link bandwidth, <link delay>, edge node cost, <AP demand>
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Wireless RANs:

• Geo-distributed

• Limited capacity

• Interference

Backbones:

• Large-scale

• High latency

• ISP policies

Edge Network:

• Complex topo

• Distributed

• Dynamic load



Edge Demand Model

❑ Challenge: non-static, time-varying

❑ Observation: seasonal/repeating patterns
❖ Example: the load in the same hour of workdays at an AP is similar

❑ Repeating time-slotted demand model

❖ Demand across slots in one period: non-i.i.d.

❖ Demand per slot across periods: i.i.d.
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Period

… …Time

Slot



Edge Resource Provisioning /1

❑ Challenges: which decisions should be dynamic, which static?

❑ Formulation: a three-stage decision problem

❑ Stage 1: Service Deployment (SD)
❖ Deploy edge service on host nodes by ECM

❖ Globally fixed: static across time slots & periods.

❑ Stage 2: Network Provisioning (NPR)
❖ Network routing and bandwidth allocation by NM

❖ Per-slot: dynamic across time slots, but static for same slot across periods!

❑ Stage 3: Network Estimation (NE)
❖ Instantaneous traffic allocation by ESP

❖ Dynamic: dynamic across both time slots and periods!
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Objective and Overall Formulation

❑ Objective: minimize max traffic-averaged delay across time slots

❑ But {𝛿𝑡,𝑎} and {𝑑𝑡,𝑝} are both random…
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𝑠. 𝑡.
Stage 1: SD

Stage 2: NPR

Stage 3: NE



SO and CVaR

❑ Stochastic Optimization (SO): optimize a function in
presence of randomness (random objective and/or constraints)
❖ Traditional approach: expectation optimization

❖ Issue: unbounded risk in rare but unfortunate scenarios

➢ E.g., abnormal demands due to public events, rare large-scale failures, …

❖ How to model these unfortunate scenarios?

❖ Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR):

➢ Widely used in economics and finance

➢ VaR𝛼(R) = min { c ∈ ℝ | R does not exceed c with at least 𝛼 prob. }

➢ CVaR𝛼(R) = 𝔼[ R | R ≥ VaR𝛼(R) ]

❑ Expectation of R in the worst (1-𝛼) scenarios

❖ Our approach: optimize both expectation and CVaR
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min𝒳∈ℱ max𝑡 𝔼[ 𝐷𝑡 ]



Final SAA Formulation

❑ The Robust Edge Provisioning (REP) problem
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SAA Terms

CVaR LP 
Transformation
(Rockafella & Uryasev)

max𝑡 Linearization

MILP with Θ(𝑇𝐾𝑃) variables. 

NP-hard by reduction from Knapsack.
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Iterative Optimization Algorithm

❑ Benders’ decomposition: (Row Generation) In each iteration,
add new constraints (cuts) to the problem that push the main 
problem towards the optimal:
❖ INIT: feasible main solution; then proceed in iterations:

➢ Solve sub dual problem based on main solution (UB).

➢ If sub dual unbounded, add feasibility cut to main;
if sub dual optimal, add optimality cut to main.

➢ Solve updated main (LB).

❖ Until UB – LB < 𝜖.

❑ Nested Benders’ decomposition
❖ Apply two Benders’ decompositions for Phase-I and Phase-II respectively.
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Convergence to optimality: proof by Benders.



Additional Techniques Applied

❑ Multiple Cuts (Birge & Louveaux)

❖ Dividing one optimality cut into one cut per sub-problem.

❖ Improves efficiency by pruning more sub-optimal region per-iteration.

❑ Fast Forward Fast Backward (FFFB)
❖ Do not wait till Phase-II convergence to update Phase-I main problem

❖ Cuts based on non-optimal Phase-II solutions help prune more sub-optimal 
region per-iteration.

❑ Analytical Stage-3 Dual Solving
❖ Linear time algorithm for solving the Stage-3 dual problems…

❖ … instead of cubic time for solving as an LP
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Simulation Settings

❑ Settings
❖ Dataset: NYC Yellow Taxi 2018

➢ 12 months of Taxi drop-off data (~112 million taxi trips)

➢ Picked 5 or 20 most popular zones out of 262 (18% or 55% of all demands)

➢ 100-days for training: solving SAA formulation for SD and NPR

➢ 265-days for testing: evaluating solutions with NE

❖ Synthetic Data

➢ Random topologies: Watts-Strogatz with k = 4 and p = 0.3 (5 edge nodes)

➢ Deployment costs: 𝒩(1000, 2002); cost budget: 3300 (uniform)

➢ Pathbook: 3 min-hop paths for each AP-Edge node pair

➢ Network conditions:

❑ Normal scenario: 5 Gbps links with 𝒩(10, 42) ms delays

❑ Congested scenario: 2 Gbps links with half nodes experiencing 50× delays

❖ 𝜌1 = 𝜌2 = 0.5 (expectation vs. CVaR), 𝛼 = 0.95 (CVaR confidence), 𝜖 = 10−3 (convergence)
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Experiment Results
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Time-varying vs. Time-agnostic
• Time-varying has increased advantage over time-agnostic with more slots.

=> Fixed provisioning without per-slot adjustment has poor performance.
(For each slot, load is averaged over entire slot.)

T-Var: time-varying

T-Ago: time-agnostic

Setting: Small/Congested



Experiment Results
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Optimal vs. Heuristics
• Consistent performance advantage over heuristics

=> User satisfaction / revenue in the long-term

RAND: random edge node

AVG: optimiz. avg. delay

Setting: Medium/Normal
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Other Perspectives, Conclusions

❑ So far, we’ve talked about
❖ Model: time-varying demands & network

❖ CVaR w/ multi-stage stochastic optimization

❖ Provisioning with single service & pathbook

❑ What could be improved
❖ Multi-service provisioning / sharing

❖ Dynamic routing w/o pathbook

❖ Multi-dimensional network resources

❖ Distribution-aware formulations

❖ Improved optimization methods

❖ Learning-based optimization

❑ Conclusions: observed uncertainties => risk-aware networking
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First-attempt modeling & solving

Modeling Perspective

Stochastic Perspective

Algorithmic Perspective



Thank you very much!
Q&A?

30


