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ABSTRACT
Edge computing is one of the revolutionary technologies that en-
able high-performance and low-latency modern applications, such
as smart cities, connected vehicles, etc. Yet its adoption has been
limited by factors including high cost of edge resources, heteroge-
neous and �uctuating demands, and lack of reliability. In this paper,
we study resource provisioning in edge computing, taking into
account these di�erent factors. First, based on observations from
real demand traces, we propose a time-varying stochastic model
to capture the time-dependent and uncertain demand and network
dynamics in an edge network. We then apply a novel robustness
model that accounts for both expected and worst-case performance
of a service. Based on these models, we formulate edge provisioning
as a multi-stage stochastic optimization problem. The problem is
NP-hard even in the deterministic case. Leveraging the multi-stage
structure, we apply nested Benders decomposition to solve the prob-
lem. We also describe several e�ciency enhancement techniques,
including a novel technique for quickly solving the large number
of decomposed subproblems. Finally, we present results from real
dataset-based simulations, which demonstrate the advantages of
the proposed models, algorithm and techniques.
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1 INTRODUCTION
Advances in machine learning, computer vision, big data and more
have enabled many new applications that employ connected intel-
ligence to improve human lives, some of the most promising ones
including smart home, smart city, and autonomous driving, to name
a few. These applications gather the massive data generated by net-
worked devices, and use centralized computing for data analytics
and decision making. With more and more devices connected via
the Internet-of-Things, however, our existing communication and
computing infrastructures are being challenged. How to meet appli-
cation performance goals while facing excessive load is becoming a
critical problem both technically and commercially, which hinders
the adoption of new life-changing applications.

Our current Internet-based cloud platforms fail to provide high-
throughput, low-latency and reliable services due to unpredictabil-
ity of the Internet. This has motivated the development of edge
computing, where computing resources are provided via distributed
nodes in the edge network. Edge computing enables services deploy-
ment proximal to end devices and users, both improving throughput
and reducing latency. Yet edge computing has its own limitations,
such as high cost, limited capacity, unreliable networks, etc. E�-
cient utilization of edge resources thus becomes a crucial problem.

In this paper, we study resource provisioning for edge services.
We consider an integrated provisioning problem that involves ser-
vice deployment, network provisioning, and simultaneously esti-
mating and optimizing service performance. Di�erent factors are
accounted for during provisioning, including cost budget of the
service provider, limited network resources, service robustness, and
�uctuating demands and network condition. For the last consid-
eration, we base our study on analysis of real-world datasets. We
observe that some applications have very heterogeneous demands
across both time and space. Moreover, in many cases the demands
follow temporal-spatial repeating patterns, which is commonly due
to the repeating behaviors of its users and devices. Such patterns
can be crucial in performance enhancement and resource utiliza-
tion. We propose a time-varying stochastic model to account for
these patterns, which allows �ner-grained resource provisioning.
We further consider service performance robustness in terms of av-
erage user quality-of-service (QoS). We apply a balanced robustness
metric, named Conditional Value-at-Risk (CVaR), which can �exibly
trade-o� between the expected and worst-case service performance.

Based on these models, we formulate robust edge provisioning
as a three-stage stochastic optimization problem. The problem is a
large-scale mixed integer linear program (MILP), and is NP-hard
even in the deterministic case. We propose an optimal algorithm
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based on nested Benders decomposition, which utilizes the decompos-
able structure of the problem. The original Benders decomposition
su�ers from slow convergence. We then describe e�ciency en-
hancement techniques, including both established ones that apply
to our problem, and a novel analytical solution to the decomposed
subproblems. To validate our study, we have conducted simulations
based on datasets synthesized from real data traces. The results
show that our model enables �ne-grained and robust provision-
ing of edge resources, the proposed algorithm generates superior
solutions over heuristic approaches, and the described e�ciency en-
hancement techniques are e�ective in reducing convergence time.
To summarize, our contributions are as follows:

• We observe temporal-spatial repeating demand patterns
from real-world traces, and formulate a three-stage edge re-
source provisioning problem with cost, resource, and robust-
ness considerations. Edge provisioning with time-varying
and temporal-spatial repeating demands has yet been studied
to the best of our knowledge.

• We propose a nested Benders decomposition-based optimal
approach to this NP-hard problem, as well as several e�-
ciency enhancement techniques.

• We present results from real data trace-based simulations,
which show the advantages of the proposed models, algo-
rithm, and techniques.

The rest of this paper is organized as follows. Sec. 2 presents our
observations and our system model. Sec. 3 presents our problem
and states its complexity. Sec. 4 presents our optimal algorithm
and the e�ciency enhancement techniques. Sec. 5 presents our
simulation results. Sec. 6 discusses related work in the literature.
Finally, Sec. 7 concludes this paper.

2 SYSTEM MODEL AND OVERVIEW
2.1 Edge System Model
The edge network is modeled as a directed graphG = (N ,L), where
N is the set of nodes, and L is the set of links between nodes.
The network consists of computing nodes (hosts) denoted by H ✓
N , and access points (APs) denoted by A ✓ N . Each link l 2 L
has a bandwidth capacity bl . We assume the network is strongly
connected. A weakly connected or disconnected network can be
made strongly connected by adding arti�cial zero-bandwidth links.

Three parties exist in the system. The network manager (NM)
manages the network, including all network nodes and links. The
edge computing manager (ECM) manages the computing resources
on computing nodes. Finally, the edge service provider (ESP) oper-
ates an edge service. The ESP’s goal is to deploy its service in the
edge network to serve external user demands. We consider an edge
service receiving and processing continuous data streams from APs.
Typical examples include crowdsensing services that aggregate
and analyze sensing data from mobile users, smart transportation
services that receive data from sensors and vehicles and perform
tra�c scheduling, and emergency services that monitor and ex-
tract eventual information. The service can be deployed on one or
multiple distributed computing nodes. However, as edge resources
are expensive, universal service deployment may be impractical.
Formally, let us use ch to denote the cost of deploying and operating
the edge service on node h 2 H . The cost budget of the ESP is C .

2.2 Edge Demand Model
While demand patterns di�er across applications, a common char-
acteristic of edge demand is its frequent temporal-spatial dynamics.
Such dynamics usually follow time-varying and repeating patterns
over time. This could be due to many factors such as repeating user
activities, user mobility, and duty-cycling services, and it can be
observed on both small-scale and large-scale systems. For example,
Fig. 1(a) shows the average-per-hour number of mobile devices
connected to top-10 popular building APs in a campus network
from 09/2002 to 09/2003 [15]. Fig. 1(b) shows the average number of
passengers dropped-o� by Yellow Taxi at top-10 popular taxi zones
in NYC in 2018 [27]. Though measuring di�erent data, both datasets
show the di�erent demands in di�erent hours over a day, which
most likely attributes to the repeating daily activities of users.

(a) Top 10 Dartmouth College buildings: average connected devices

(b) Top 10 New York City (NYC) taxi zones: average passenger drop-o�s

Figure 1: Time-varying demands from twodi�erent datasets:
(a) average number of devices conected to campus APs, and
(b) average passenger drop-o�s at NYC taxi zones.

Motivated by the observation, we adopt a time-varying demand
model. We divide time intoT time slots, each representing a demand
pattern observed over time. For simplicity, we assume all slots are
of equal lengths and are successively repeating, and denote the
course of time over all slots as a period. Our model and solution
can be trivially extended to handle time slots with di�erent lengths
and repeating patterns. From Fig. 1, demand distributions can be
neither identical nor independent across APs in one time slot, or
across di�erent slots at the same AP. Speci�cally, demand at AP
a 2 A in slot t = 1 . . .T is assumed to follow a (possibly unknown)
distribution, which we denote by random variable �t,a ; the total
demand in t is de�ned as �t =

Õ
a �t,a . This re�ects the fact that

even in the same slot, the exact demand may still �uctuate across
periods due to unattended factors such as special events, seasonal
changes, etc. Under this model, provisioning is done for each slot
across di�erent periods, instead of being �xed at all time.

2.3 Network Provisioning Model
Network has a critical impact on edge service performance. Ideally,
the ESP wishes to attain optimal network performance via frequent
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or real-time network optimization. However, the network is man-
aged by the NM (e.g., an ISP) and hence out of ESP’s control. We
assume the NM can process network optimization requests from
the ESP, but not frequently or in real-time due to the complexity of
network management and the large number of supported services.

Based on the time-varying demand model, the ESP employs the
following strategy. During initial provisioning, the ESP submits
a network optimization request for each time slot with demand
information. The NM provisions a dedicated networking policy for
each slot based on the requests. After the service starts operating,
the NM updates its policy based on the time slots. If the demand
patterns change, the ESP can re-submit those requests, and the NM
will derive new policies and operate based on them thereafter.
Routing. The NM’s network policy can greatly impact the service
performance. Ideally, �ow-based optimization (e.g., min-cost multi-
commodity �ow [1]) can lead to optimal routing and bandwidth
allocation for maximum service performance. Practically, the high
complexity of �ow-based algorithms discourages their usage in
real networks. Fortunately, recent advances in pathbook routing
have shown that a small set of carefully selected paths (e.g., 3–5
paths per commodity) can achieve close-to-optimal throughput in
real networks, while tra�c engineering overhead can be drastically
reduced compared to �ow-based algorithms [16]. Since the NM
may serve many ESP requests at the same time, we believe that
pathbook routing is suitable as an e�cient yet adequate routing
solution for the NM. Formally, we use P =

–
{Pa,h | a 2 A,h 2 H }

to denote the pathbook used by the NM. We only consider paths
that connect APs to hosts for a speci�c ESP. Based on ESP requests,
the NM derives bandwidth allocation across paths for each time
slot, subject to the available bandwidth on network links.

Performance of an edge service is largely dependent on network
performance of data streams. We assume ESP’s goal is to optimize
the QoS of its service, notably the network delay, when serving
external demands. Network conditions may �uctuate due to con-
gestion, failures and maintenance, malicious tra�c, etc. To model
such dynamics, we use random variable dt,l to denote the delay of
a link l 2 L in time slot t . We note that link delay is independent of
demand due to explicit demand allocation; see next section.

3 PROBLEM STATEMENT AND COMPLEXITY
The initial edge provisioning consists of the following steps. First,
the ESP selects a set of computing nodes to deploy the service. Since
service deployment incurs manual cost for setup and testing, it is
�xed once the provisioning is done; live service migration is consid-
ered harmful due to interrupted service to users, and hence is not
considered in this paper. Second, the ESP submits requests to the
NM for network optimization based on demand and network statis-
tics. After the provisioning is done, the ESP is presented with a ser-
vice deployment plan, as well as a set of paths with pre-determined
per-time slot bandwidth quotas. Unlike service deployment by the
ECM, the NM can change bandwidth quotas by simply adjusting
weights in the network without interrupting the service. Hence the
bandwidth quotas can be updated in each time slot. In operations,
the ESP adjusts demand allocation across paths in real-time, subject
to the bandwidth quotas of the paths, to continuously serve user
demands with optimized network performance.

3.1 Basic Problem Formulation
3.1.1 Service Deployment (SD). The �rst stage, service deployment,
is formally denoted by variables X = {x(h) 2 {0, 1} | h 2 H }, where
x(h) = 1 means that edge node h hosts a service instance and vice
versa. The deployment is bounded by the cost budget of the ESP:’

h2H
chx(h)  C . (1)

Further, the service must have at least one instance deployed:’
h2H

x(h) � 1. (2)

3.1.2 Network Provisioning (NPR). Given �xed SD, the next step is
to provision the network for each time slot. De�ne Y =

–T
t=1 Yt ,

where Yt = {�(t ,p) � 0 | p 2 P} is the set of variables for pathbook
bandwidth allocation for slot t . First, the allocation is constrained
by the deployed service instance, i.e., a path can have positive
bandwidth only if it connects an access point to a deployed instance:

�(t ,p)  bmax
p x(hp ), 8t ,p 2 P , (3)

where bmax
p = minl 2p {bl } is the bottleneck bandwidth of the path,

and hp is the host destination of path p. Further, in each t , all paths
using a link must obey the link’s bandwidth capacity:’

p2P :l 2p
�(t ,p)  bl , 8t , l 2 L. (4)

3.1.3 Network Estimation (NE). In normal operations, the ESP
would �exibly allocate demands across paths subject to the pre-
determined bandwidth allocation, in order to optimize instanta-
neous network performance. This information can also be used in
initial provisioning, when the ESP estimates the expected network
performance for a bandwidth allocation plan, and optimizes both
service deployment and bandwidth allocation accordingly. Formally,
de�ne Z =

–
t Zt , where Zt = {z(t ,p) � 0 | p 2 P} is the set of

(random) variables denoting demand allocation on path p in time t .
The allocation is upper bounded by the bandwidth on each path:

z(t ,p)  �(t ,p), 8t ,p 2 P . (5)
The allocation must also serve all demand from each AP:’

p2Pa
z(t ,p) � �t,a , 8t ,a 2 A, (6)

where Pa =
–
h2H Pa,h contains all paths from a to a host.

3.1.4 Network Objective. With Constraint (6) serving all user de-
mands, the ESP’s goal is to optimize network QoS, i.e., transmission
delay of all user demands. Given the stochastic model of demands
and delays, we use Dt to denote the weighted average delay of all
demands at time t , which is also a random variable, where

Dt
�
=

1
�t

’
p2P

dt,pz(t ,p). (7)

and dt,p =
Õ
l 2p dt,l is the delay of a path. Consistent service per-

formance is preferred, hence ESP can seek to optimize the highest
delay across time. Informally, the problem can be expressed as

min
X2F

max
t

{Dt } , (8)

where X = (X ,Y ,Z ), and F is the feasibility region by (1)–(6).

3.2 Stochastic Optimization and Robustness
Given the stochastic nature of Dt , a common practice is to optimize
the expectation of the objective. However, expectation optimization
has limited ability in handling infrequent adverse scenarios [36].
For the provider, an elastic and fault-tolerant system produces more
consistent revenue and lowers business risk in the long run. For
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the users, a service with more stable performance leads to better
user experience and higher satisfaction. Both perspectives coincide
on the importance of robustness in performance optimization.

To counter performance �uctuation, we use a model called the
Conditional Value-at-Risk (CVaR), a common risk measure in �nan-
cial risk management. CVaR is widely used to measure the expected
investment loss that an investor faces when market undergoes un-
favorable variations. Formally, denote random variable R as the
investor’s loss, then given a con�dence value � 2 [0, 1], de�ne

VaR� (R)
�
= min{r | Pr[R  r ] � � }, (9)

CVaR� (R)
�
= E[R | R � VaR� (R)]. (10)

E(·) denotes the expectation of a random variable. Eq. (9) de�nes the
Value-at-Risk (VaR) with con�dence � , representing the minimum
value such that with � con�dence, the investment loss will not
exceed this value. Eq. (10) then de�nes the CVaR as the expected
value of loss in all scenarios where the loss exceeds the VaR, i.e.,
the expected loss in the worst (1 � �) scenarios.

Notably, CVaR de�nes a trade-o� between two objectives, con-
trolled by � . If � = 0, Eq. (10) equals to expectation of R over the
entire distribution. If � ! 1, CVaR converges to the maximum loss
over all possible scenarios, and minimizing CVaR equals to mini-
max in robust optimization. While expectation lacks robustness at
all, minimax addresses only the worst case; in practice, minimax
could reduce worst-case loss by an arbitrarily small amount, but
drastically increase loss in all other cases. CVaR avoids both issues.

3.3 CVaR-based Formulation
Back to our problem, the ESP may seek to optimize both the ex-
pected average delay and CVaR of the average delay. To strike a
balance, we formulate a scalarized two-objective problem:

min
X2F

max
t

{�1 · E[Dt ] + �2 · CVaR� (Dt )} , (11)

Parameters �1 and �2 de�ne the trade-o� between expectation and
robustness, and can be tuned based on the ESP’s actual objective.

In Eq. (10), the computation of CVaR requires �rst computing
VaR, which itself does not have a closed form. Fortunately, Rockafel-
lar and Uryasev have shown in [24] that the CVaR can be directly
computed using the following formula:

CVaR� (Dt ) = min
r (t )2R

⇢
r (t) +

1
1 � �

E
⇥
(Dt � r (t))

+
⇤�
, (12)

where (Dt � r (t))+ = max{Dt � r (t), 0}, and R is the real number
set. Note that in (12), the VaR is automatically computed as the
minimizing value of r (t). Merging (12) into Program (11), we have

min
X2F,R

max
t

✓
�1E[Dt ]+�2

✓
r (t)+

1
1��
E
⇥
(Dt �r (t))

+
⇤ ◆◆
. (13)

where R = {r (t)} is the set of VaR variables for all time slots.

3.4 Sample Average Approximation (SAA)
Program (13) is hard to solve even with known distributions, since
the solution cannot be derived in a closed form. Hence for each
t , we use a set of independently and identically distributed (i.i.d.)
samples St = (S1t , . . . , S

K
t ) to approximate the distributions, where

each Skt = {�kt,a | a 2 A}[ {dkt,l | l 2 L} contains a realization of the
demands and delays in time t . With �xed SD and NPR, the optimal
average delay of a sample can be computed by solving (5)–(8).

Let Zk
t = {z(t ,k,p)} be the demand allocation variables for sam-

ple k of time slot t , and Dk
t be the optimal average delay (under

(5)–(6)) fork . We useZt =
–
k Z

k
t andZ =

–
t Zt to denote the ex-

tended rate allocation sets over all samples of a time slot and all slots,
respectively. The expected average delay E[Dt ] is approximated by
the sample average 1

K
ÕK
k=1 D

k
t . Similarly, CVaR� (Dt ) is approxi-

mated by min
r (t )2R

⇢
r (t) + 1

1��
1
K
ÕK
k=1

⇣
Dk
t � r (t)

⌘+�
. To completely

re-formulate Program (13) using sample averages, we de�ne auxil-
iary variablesW =

–
tWt , whereWt = {w(t ,k) � 0 | k = 1 . . .K}.

We also linearize the maximum term in the objective function (13)
using an additional variable D 2 R. Then Program (13) can be
re-formulated as a mixed integer linear program (MILP):

min
X ,Y ,Z,
R,W ,D

D (14a)

s.t.
D � �1

1
K

’K
k=1

Dk
t +

�2

✓
r (t) +

1
1 � �

1
K

’K
k=1

w(t ,k)

◆
,8t ;

(14b)

w(t ,k) � Dk
t � r (t), 8t ,k ; (14c)

(1)–(4), and 8t ,k, (5)–(6).
We call this the Robust Edge Provisioning (REP) problem. It is
well-known that the SAA problem converges arbitrarily close to
the original problem with a su�cient number of i.i.d. samples [14].

3.5 Computational Complexity
T������ 3.1. REP is NP-hard. ⇤
P����. Neglecting stochastics, the problem can be reduced from

Knapsack, where n items each with a cost ci and a value vi are to
be put into a knapsack with maximum cost C and minimum value
V. Consider an instance of REP with n edge computing nodes in H ,
all connected to a single AP a 2 A, each with deployment cost ci
and bandwidth vi . The ESP has a budget of C, and a has a constant
demand of V. Then deciding if the REP instance is feasible is equal
to solving the Knapsack instance. REP’s NP-hardness follows. ⇤

4 REP WITH MULTI-STAGE OPTIMIZATION
Due to problem NP-hardness and its scale, a decomposition-based
algorithm is proposed based on the structure of the problem.

4.1 Problem Decomposition
From its de�nition, the problem can be vertically decomposed into
three stages. At the later stages (NPR and NE), the corresponding
subproblems can further be horizontally decomposed. The �rst-
stage SD problem is an MILP:

O
�
= min

X ,D
D s.t. 8t ,D � Pt (X ); (1)–(2). (15)

The second-stage NPR subproblem given �xed X is an LP:

Pt (X )
�
= min

Yt ,r (t )
�2r (t) +

1
K

’
k
Qt,k (Y ,R)

s.t. (3)–(4).
(16)

The third-stage NE subproblem given (Y ,R) is also an LP:

Qt,k (Y ,R)
�
= min

Z,W
�1 · D

k
t + �2 ·

1
1�� ·w(t ,k)

s.t. (14c); 8t ,k, (5)–(6).
(17)
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We useQt,k (Y ,R) to omit index t at variablesY andR as function ar-
guments. Similar notations are used hereafter to simplify notations.
Eqs. (15)–(17) show that REP has a natural vertical-horizontal three-
stage decomposition, where each Pt (X ) subproblem is independent
from its siblings, and so is each Qt,k (Y ,R). Note that variables R
andW , though both used to formulate CVaR, have been separated
by the NPR–NE decomposition to enable full independence among
Qt,k (Y ,R) subproblems. This decomposition motivates us to adopt
a decomposition-based algorithm to address the REP problem.

4.2 Benders Decomposition Basics
Benders decomposition is an iterative algorithm for solving multi-
stage decomposable optimization problems [3]. Consider a general
bounded two-stage problem in the following equal forms (assume
that for any X 2 X the problem is bounded):

minX2X,Y�0{dX + eY |AX + BY � f} (18)
= minX2X{dX +minY�0{eY | BY � f � AX}} (19)
= minX2X{dX +max��0{(f � AX)� | B0�  e}}, (20)

where � denotes the dual variables for the subproblem with only Y.
The inner subproblem is called the slave, while the outer problem
with only X is the master. Eq. (19) is via decomposition. Eq. (20) is
via strong duality of the slave as an LP. Note in (20), the dual slave’s
feasibility region is independent of X. Let � = {� � 0 | B0�  e} be
the dual feasibility region of the slave. We can re-write (20) using
only the extreme points �⇤o and extreme rays �⇤f in �:

minX2X,� dX + � (21a)
s.t. � � (f � AX)�o, 8�o 2 �⇤o, (21b)

(f � AX)�f  0, 8�f 2 �⇤f . (21c)
An extreme ray �f is a direction to which the dual slave objective
can increase without bound, which exists only if the primal slave
is infeasible for some X2X. Eq. (21c) eliminates such an infeasible
X by bounding such a ray to be below 0.

It is impractical to enumerate all extreme points and extreme
rays for a given problem. Hence, Benders decomposition works on
a relaxed version of (21) that includes only a subset of the extreme
points �o ✓ �⇤o and extreme rays �f ✓ �⇤f :

minX2X,� dX + � (22a)
s.t. � � (f � AX)�o, 8�o 2 �o, (22b)

(f � AX)�f  0, 8�f 2 �f . (22c)
If a solution (X,� ) obtained by solving (22) fully satis�es (21b)
and (21c), then (X,� ) is optimal to the original problem. This can
be checked by solving the dual slave subproblem � = max��0{(f �
AX)� | B0�  e} and checking whether � � � . If � = 1, then X is
infeasible, and a new feasibility cut (f � AX)e�  0 can be added,
where e� is an extreme ray of the unbounded dual. Otherwise if
� < � , an optimality cut � � (f � AX)�̄ can be added, where �̄ is
the optimal dual solution. Following this intuition, the Benders de-
composition starts with the relaxed problem (22) with no cuts, and
then gradually solves the relaxed problem and the corresponding
dual slave to progressively add cuts to (22). In any iteration, the
value dX + � obtained by solving (22) is a lower bound of the opti-
mal value (since the problem is relaxed), while any dX + � where
�  1 obtained by solving the dual slave is an upper bound (since it

represents a feasible solution of the problem). The algorithm stops
either when � � � which yields an optimal solution, or when (22)
is infeasible which means the original problem is infeasible as well.

4.3 Nested Benders Decomposition
The original Benders decomposition works for two-stage problems.
For our problem, we need the nested Benders decomposition [6]. As
the name suggests, the algorithm stacks two layers of the original
Benders decomposition: the Phase-I algorithm for SD–NPR, and the
Phase-II algorithm for NPR–NE. As the middle layer, NPR is both
the slave in Phase-I, and the master in Phase-II. In Phase-I, each
iteration solves the relaxed SD denoted as Ore, and then solves the
resultingPt (X ) for each t through the Phase-II; a feasibility cut as in
(22c) or a set of optimality cuts as in (22b) is added to Ore at the end
of a Phase-I iteration. In Phase-II, each iteration solves the relaxed
NPR denoted as Pre

t (X ), and then solves the resulting Qt,k (Y ,R)
for each sample k ; a feasibility cut or an optimality cut is added to
P
re
t (X ) at the end of a Phase-II iteration. After Phase-II converges,

the �nal Pre
t (X ) is equivalent to Pt (X ), and hence the optimal dual

solution of Pre
t (X ) is used to construct the Phase-I optimality cuts.

If Phase-II is infeasible for some X , then the dual (which has an
extreme ray) is used to construct the Phase-I feasibility cut. The
process stops when Phase-I converges or is deemed infeasible.

Below we formally derive the Benders cuts, starting from Phase-
II. Given �xed X , let (Y t , r (t)) be an arbitrary Phase-II master so-
lution. Assume Qt,k (Y ,R) is feasible for 8k . Let � = {� (5)

t,k (p)} [

{� (6)
t,k (a)}[ {�

(14c)
t,k } be the optimal dual multipliers for Constraints

(5), (6) and (14c) respectively. De�ne q as the auxiliary variable in
P
re
t (X ) as � in (22). The optimality cut to be added to P

re
t (X ) is

q �
’

k
L

P

t,k (� ,Y ,R) (23)
where

L
P

t,k (� ,Y ,R)=
’
a2A

�kt,a�
(6)
t,k (a)�

’
p2P

� (5)
t,k (p)�(t ,p)��

(14c)
t,k r (t).

If for some k , Qt,k (Y ,R) is infeasible. Let e� be an extreme ray of
the dual of Qt,k (Y ,R). The feasibility cut to be added to P

re
t (X ) is

L
P

t,k (e� ,Y ,R)  0. (24)

Let dual solutions � and extreme rays e� be involved in P
re
t (X ) in

a Phase-II iteration. Then P
re
t (X )

�
=

min
Yt �0,r (t ),q

�2r (t) + q/K

s.t. (3)–(4); (23) 8� i 2�; (24) 8e�j 2e�. (25)

Now, givenX , assumePre
t (X ) is feasible for8t . Let� = {� (3)t (p)}[

{� (4)t (l)} [ {� (23)t (i)} [ {� (24)t (j)} be the optimal dual multipliers for
(3), (4), (23) and (24) respectively. De�ne

L
O
t (� ,X )=

’
� i 2�

� (23)t (i)
’

k

’
a2A

�kt,a�
(6)
t,k (a)+’

e�j 2e� � (24)t (j)
’

a2A
�
kj
t,ae� (6)

t,kj
(a)�⇣’

p2P
bmax
p � (3)t (p)x(hp ) +

’
l 2L

bl�
(4)
t (l)

⌘
,

where kj is the infeasible sample corresponding to the j-th extreme
ray added to P

re
t (X ). The optimality cuts to O

re (Phase-I) is
D � L

O
t (� ,X ), 8t = 1 . . .T . (26)
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Note in Phase-I, variable D serves exactly as the auxiliary variable
� in O

re. Instead of adding one optimality cut per iteration, T cuts
are added in the form of (26). Later in Sec. 4.4, we show that this
idea can be extended to Phase-II to expedite algorithm convergence.
Now suppose for some t , Pre

t (X ) is infeasible. Let e� be an extreme
ray of the dual of Pre

t (X ). The feasibility cut to O
re is

L
O
t (e� ,X )  0. (27)

We �nally address convergence. For Phase-II, let Q⇤t,k be the op-
timal value of Qt,k (Y ,R), then an upper bound of Pt (X ) is �2r (t) +Õ
k Q
⇤

t,k (since {Q⇤t,k | k} represents a feasible solution to NE); let
P
⇤
t be the optimal value of Pre

t (X ), then P
⇤
t is a lower bound of

Pt (X ) (since it is the optimal value of the relaxed problem). Phase-II
convergence thus happens when P

⇤
t � �2r (t) +

Õ
k Q
⇤

t,k . Similarly
for Phase-I, an upper bound of O is maxt P⇤t at Phase-II conver-
gence; a lower bound is the optimal value O⇤ of Ore. Phase-I conver-
gence happens when O

⇤
� maxt P⇤t . Note that for either phase, the

lower bound is non-decreasing through iterations (since the master
becomes “less” relaxed in each iteration), yet the upper bound may
not be non-increasing (since di�erent feasible solutions may be
found with various values). The algorithm thus needs to track the
best upper bound ever found in all iterations to verify convergence.

Algorithm 1 shows the full algorithm. Lines 2–30 show Phase-I
algorithm for solving O, while Lines 7–24 show Phase-II algorithm
for solving Pt (X ) for each t . Note that for middle-layer Pre

t (X ), the
Phase-II cuts sc are shared across Phase-I iterations. This is because
although a Phase-II cut generated in a previous Phase-I iteration
may not be a valid cutting plane for the current Pt (X ), it is a valid
cut for the overall SD–NPR problem. Sharing cuts across Phase-I
iterations can prune suboptimal X solutions without running the
full Phase-II on them, and hence can speed-up convergence.

Algorithm 1 exploits the horizontal decomposition in both Phase-
I and Phase-II, wherePre

t (X ) andQt,k (Y ,R) subproblems are solved
independently for each t and/or k respectively. This is enabled by
separating all complicating variables and constraints into the cor-
responding master problems, i.e., variables (X ,D) and constraints
(1)–(2) for SD–NPR, and (Yt , r (t)) and (3)–(4) for NPR–NE. Remem-
ber we separated variables R and W when de�ning Pt (X ) and
Qt,k (Y ,R) to enable such a decomposition. With the fastest LP
algorithm running in no less than cubic time [35], such decom-
positions can reduce the dependence of time complexity over T
and K from cubic to linear for solving the subproblems. which is
speci�cally important when the sample size K is large. This is our
main motivation for applying Benders decomposition.

Since (14) is an MILP with �nite master feasibility set and LPs as
subproblems, we state Algorithm 1’s convergence as below, whose
proof is established in [3, 6] and hence omitted due to page limit.

T������ 4.1. Algorithm 1 converges to the optimal solution of a
feasible REP instance or returns “Infeasible” for an infeasible instance
in �nite iterations. ⇤

4.4 E�ciency Enhancement Techniques
Though Algorithm 1 converges, it may have a slow convergence as
a cutting plane method. Below, we describe three computational
techniques to improve its e�ciency. We start with a novel analytical
dual solving technique for the NE subproblems. We then describe

Algorithm 1: Nested Benders Decomposition for REP
Input: Network G, pathbook P , cost budget C , samples

{St }, convergence tolerance � .
Output: Optimal (X ,Y ,Z,D,R,W ).

1 LBm  �1, UBm  1,mc  ;, sc  ;;
2 repeat // Phase-I iteration
3 Solve LBm = O

re with cutsmc for (X ,D);
4 if Ore infeasible then return Infeasible.;
5 for t = 1 . . .T do
6 LBst  �1, UB

s
t  1;

7 repeat // Phase-II iteration
8 Solve LBst = P

re
t (X ) with cuts sc , and denote the

solution as (Y t , r (t));
9 if Pre

t (X ) infeasible then
10 Get extreme ray of dual Pre

t (X );
11 Add Phase-I feasibility cut tomc;
12 break;
13 for k = 1 . . .K do
14 Solve Q⇤t,k = Qt,k (Y ,R) for (Z,W );
15 if Qt,k (Y ,R) feasible then
16 Record optimal dual of Qt,k (Y ,R);
17 else
18 Get extreme ray of dual Qt,k (Y ,R);
19 Add Phase-II feasibility cut to sc;
20 break;
21 if 8k,Qt,k (Y ,R) is feasible then
22 UBst = min{UBst , �2r (t) +

Õ
k Q
⇤

t,k };
23 Construct Phase-II optimality cut from

Qt,k (Y ,R) duals, and add cut to sc;
24 until UBst � LB

s
t  � ;

25 if Pre
t (X ) infeasible then break;

26 else Record optimal dual of Pre
t (X );

27 if 8t ,Pre
t (X ) is feasible then

28 UBm = min{UBm,maxt {LBst }};
29 Construct Phase-I optimality cut from recorded

P
re
t (X ) duals, and add cut tomc;

30 until UBm � LBm  � ;
31 return X and best recorded subproblem solutions.

two established techniques, one applying to the original Benders
decomposition, and one applying to the nested algorithm.
Analytical Solving for Phase-II Slave Dual: This technique ap-
plies due to the structure of the NE subproblem, i.e., �nding optimal
per-sample demand allocation across paths is easy. Given a sample
k , for each a 2 A, one can enumerate its paths towards all hosts in
increasing delays, and then allocate demand to the shortest paths
until all demand is allocated. This leads to a linear-time optimal
algorithm for primal NE, assuming pre-sorted paths in all samples.

Yet, dual information is needed to add cut(s). In general, obtaining
the dual of a primal solution is equivalent to solving a system of
linear equations, which takes cubic time, not much faster than
solving the dual LP directly. For our problem, though, we propose
a linear time analytical solution (with pre-sorting) for dual NE.
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Consider an instance ofQt,k (Y ,R). Let� = {� (5)
t,k (p)}[{�

(6)
t,k (a)}[

{� (14c)
t,k } be the dual variables for Constraints (5), (6) and (14c) re-

spectively. The dual of Qt,k (Y ,R) is

max
� �0

’
a2A

©≠
´
�kt,a�

(6)
t,k (a) �

’
p2Pa

�(t ,p)� (5)
t,k (p)

™Æ
¨
� r (t)� (14c)

t,k (28a)

s.t. � (14c)
t,k 

�2
1 � �

; (28b)

� (6)
t,k (a) � �

(5)
t,k (p) 

1
�kt

dkt,p

⇣
�1 + �

(14c)
t,k

⌘
,

8a 2 A,p 2 Pa .
(28c)

Now consider an AP a 2 A. Let its path set Pa be sorted as Pa =
(pa1 ,p

a
2 , . . . ,p

a
p ) in increasing order of path delays dkt,p . For sim-

plicity we assume all path delays are distinct. De�ne the critical
path index as ja = argminj {dkt,paj

| paj 2 Pa ,
Õj
i=1 �(t ,p

a
i ) � �kt,a }

and dacrit = dkt,paja
, i.e., the min-delay path paj such that all paths

with delay no greater than dkt,paj
can fully satisfy the demand �kt,a .

Based on the aforementioned optimal primal solution, any path
with dkt,p < dacrit will have a saturated allocation z(t ,k,p) = �(t ,p),
while all paths with dkt,p > dacrit will have z(t ,k,p) = 0.

Further de�ne �asum =
Õ
j<ja �(t ,p

a
j ) and �acrit = �kt,a � �

a
sum.

From the primal solution, the optimal average delay can be com-

puted as D⇤t,k =
1
� kt

Õ
a

✓Õ
j<ja d

k
t,paj

�(t ,paj ) + d
a
crit�

a
crit

◆
. We then

compute an optimal dual solution by the following:

� (14c)
t,k =

8><
>:

�2
1 � �

D⇤t,k � r (t)

0 otherwise
, (29a)

� (6)
t,k (a) =

1
�kt

⇣
�1 + �

(14c)
t,k

⌘
dacrit, (29b)

� (5)
t,k (p) =

1
�kt

⇣
�1 + �

(14c)
t,k

⌘ ⇣
dacrit � d

k
t,p

⌘+
. (29c)

To compute these values, the paths need to be sorted, which takes
O(p log p) time. The sorting only needs to be performed once for
every sample. Therefore, with a O(TKP log P) pre-sorting, each
dual of Qt,k (Y ,R) can be analytically solved in linear time using
Eqs. (29). We note that feasibility of Qt,k (Y ,R) can be addressed
during the computation: if

Õ
p2Pa �(t ,p) � �kt,a for 8a 2 A, then

Qt,k (Y ,R) is feasible. Otherwise, (29) also presents a valid extreme
ray when dacrit takes any value that is greater than the longest path
delay with positive �(t ,p) and � (14c)

t,k =
�2
1�� ; the proof is similar

to that of Theorem 4.2 and hence is omitted. An alternative for
addressing infeasible Qt,k (Y ,R) is to add a new constraint’

p2Pa
�(t ,p) � max

k
{�kt,p }, 8a 2 A

to the Phase-II master Pre
t (X ), and modify the cuts in (26) and (27).

This ensures that Qt,k (Y ,R) is always feasible. The following theo-
rem states the optimality of Eqs. (29) when the dual NE subproblem
is feasible given Y and R:

T������ 4.2. For a feasible instance of Qt,k (Y ,R), Eqs. (29) de-
note an optimal solution to Program (28). ⇤

P����. Let us consider a speci�c a 2 A and its path set Pa . To
start with, we �x � (14c)

t,k and de�ne �t,k = 1
� kt

⇣
�1 + �

(14c)
t,k

⌘
. For a

given � (6)
t,k (a), divide Pa into four sets:

• P1a = {p |�(t ,p) > 0,�t,k · dkt,p  � (6)
t,k (a)},

• P2a = {p |�(t ,p) > 0,�t,k · dkt,p > � (6)
t,k (a)},

• P3a = {p |�(t ,p) = 0,�t,k · dkt,p  � (6)
t,k (a)}, and

• P4a = {p |�(t ,p) = 0,�t,k · dkt,p > � (6)
t,k (a)}.

For p 2 P2a , �
(5)
t,k (p) = 0 by complementary slackness of Constraint

(5). For p 2 P3a [ P4a , �
(5)
t,k (p) takes arbitrary value no less than

max{� (6)
t,k (a) � �t,kd

k
t,p , 0}, which ensures (28c); note that none of

these paths contribute to the objective value since �(t ,p) = 0. For
p 2 P1a , we must have a strict equality:

� (5)
t,k (p) = � (6)

t,k (a) � �t,kd
k
t,p , 8p 2 P1a . (30)

If any such � (5)
t,k (p) is more, then we can solely decrease � (5)

t,k (p) to
increase the objective value, contradicting optimality.

Taking (30) into the objective function (28a), we can re-write the
�rst part of (28a) for each a 2 A as:
D

k
t (a) = �kt,a�

(6)
t,k (a) �

’
p2Pa

�(t ,p)� (5)
t,k (p) (31a)

= �kt,a�
(6)
t,k (a) �

’
p2P 1

a

�(t ,p)
⇣
� (6)
t,k (a) � �t,kd

k
t,p

⌘
(31b)

=
©≠
´
�kt,a �

’
p2P 1

a

�(t ,p)
™Æ
¨
� (6)
t,k (a) +

’
p2P 1

a

�(t ,p)�t,kd
k
t,p . (31c)

In (31c), the right term is only related to the set P1a , while the
left term is decided by both P1a and � (6)

t,k (a). Recall we de�ne the
critical delay as dacrit = min{d |

Õ
p :dkt,p d

�(t ,p) � �kt,a } (equiva-

lent to the de�nition by a critical path). If � (6)
t,k (a) > �t,kd

a
crit, by

de�nition �kt,a �
Õ
p2P 1

a
�(t ,p)  0. Then we can reduce � (6)

t,k (a)

until � (6)
t,k (a) = �t,kd

a
crit to increase (or not to decrease if �kt,a =Õ

p2P 1
a
�(t ,p)) the value of (31c). If � (6)

t,k (a) < �t,kd
a
crit, by de�ni-

tion �kt,a �
Õ
p2P 1

a
�(t ,p) > 0. Then we can increase � (6)

t,k (a) un-

til � (6)
t,k (a) = �t,kd

a
crit to again increase (31c). The only �exibility

� (6)
t,k (a) can have is when �kt,a =

Õ
p :dkt,p dacrit

�(t ,p), in which case

� (6)
t,k (a) can take any value between �t,kd

a
crit and �t,kd

k
t,pn where

pn is the next path after the critical path that has a positive �(t ,p).
The above has addressed the optimal values of� (5)

t,k (p) and�
(6)
t,k (a)

as in (29b) and (29c). Now if we take these values and �t,k into (31c),
then

Õ
a2A D

k
t (a) = D⇤t,k · (�1 + �

(14c)
t,k ) where D⇤t,k is the optimal

sample average delay. The full dual objective can be re-written as
D

k
t =

’
a2A

D
k
t (a) � r (t)�

(14c)
t,k (32a)

= �1 · D
⇤

t,k + (D
⇤

t,k � r (t))�
(14c)
t,k . (32b)

It is now clear that if D⇤t,k � r (t) � 0, then � (14c)
t,k can take the

maximum value �2
1�� constrained by (28b); otherwise � (14c)

t,k = 0. ⇤
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Multiple Cuts: In each Phase-II iteration in Algorithm 1, at most
one optimality cut (in the form of (22b)) is added. Birge and Lou-
veaux [7] �rst noticed that by dividing a single optimality cut into
multiple cuts, one for each independent subproblem for example,
the convergence speed can be improved. Intuitively, this is because
multiple cuts can prune more sub-optimal region of the master
solution space in each iteration, hence the number of iterations is
reduced. We can apply this technique to our algorithm. Instead of
having one auxiliary variable q in Eq. (23), K variables are de�ned
as {q(k)}. The optimality cuts to replace Eq. (23) are

q(k) � L
P

t,k (� ,Y ,R), 8k, (33)

and the objective function of Pre
t (X ) in (25) is updated as

min �2r (t) +
1
K

’
k
q(k). (34)

The Phase-I algorithm has already employed a multi-cut formula-
tion as in (26). We highlight that this technique does not change the
execution in Algorithm 1: all subproblems Qt,k (Y ,R) must still be
solved before the cuts in (33) can be added, in order to avoid adding
optimality cuts for an infeasible (Y ,R). This is speci�cally impor-
tant when implementing the algorithm distributedly. We show in
Sec. 5 that this can achieve signi�cant speed-up of the algorithm.
Fast Forward Fast Backward (FFFB): In Algorithm 1, each Phase-
I iteration consists of a full Phase-II convergence: only dual of the
optimal Phase-II master solution is passed onto Phase-I. This is the
Fast Forward (FF) approach proposed by Birge [5]. Another choice
is Fast Backward (FB): its main loop consists of the Phase-II algo-
rithm, where each Phase-II iteration consists of a full convergence
of Phase-I [31]. However, neither approach achieves the best prac-
tical performance. A balanced approach, called Fast Forward Fast
Backward (FFFB), is shown to be the most e�cient in practice [6].
In each main iteration, the algorithm performs a full forward sweep
(solving Phase-I master, Phase-II master and Phase-II slave), fol-
lowed by a full backward sweep (adding Phase-II cut(s), solving
Phase-II master once, and then adding Phase-I cut(s) based on it); if
in the forward sweep the Phase-II master is infeasible, then such
information is directly passed to the Phase-I master. FFFB speeds-
up convergence similarly as sharing Phase-II cuts: cuts based on
non-optimal (but feasible) NPR help eliminate suboptimal Phase-I
master solutions early, which reduces the total number of Phase-I
master solutions visited. We show its e�ectiveness also in Sec. 5.

4.5 Discussions
Complexity. Algorithm 1 converges to optimal (Theorem 4.1) but
has exponential worst-case complexity, and techniques in Sec. 4.4
do not reduce it to polynomial. However, the techniques (especially
dual analytical solving) present two main advantages in practice.
First, we found that practically NE solving is the e�ciency bot-
tleneck due to the large number of samples needed for accurate
sampling. Our technique speeds-up worst-case per-iteration NE
solving by at least two orders of magnitudes, greatly improving
e�ciency without sacri�cing solution quality. Second, iterative
algorithms are commonly implemented with a time bound in prac-
tice. Faster per-iteration solving greatly increases the solution space
searched in bounded time, thus improving solution quality.
Distributed computation. Algorithm 1 can be distributed among
ECM, NM and ESP. Each party can solve its own subproblem (SD

for ECM, NPR for NM, and NE for ESP itself), and exchange solu-
tion information. Distributed computation may not only reduce
per-party computational overhead, but also preserves privacy of
certain parties, e.g., the computing resource distribution of the ECM,
and the network topology of the NM. We will explore distributed
computation and its implications in our future work.

5 PERFORMANCE EVALUATION
5.1 Evaluation Method
We synthesized real-world demand traces with randomly generated
data for evaluation. For demands, we used the NYC 2018 Yellow
Taxi Trip Data [27], which contains around 112 million taxi trips
including drop-o� times and taxi zones. We divided the year into
days as periods, and each day was divided into 2–24 (4 by default)
time slots. We regarded each taxi zone as a single AP, and took the
average number of passengers dropped-o� in each slot as a demand
sample at the AP, where each passenger represented 1 Mbps of
�xed demand. We picked the top 5 (small) or 20 (medium) most
popular drop-o� zones over the entire 262 zones depending on the
desired problem size, which accounted for 18% or 55% of all demands
respectively. We used the �rst 100 days as our training samples, i.e.,
samples used to solve the optimization problem to derive SD and
NPR.We then used the next 265 days as our test samples, i.e., samples
used to evaluate our solution once it is employed.

We synthesized the other inputs of the problem. First, we built
random topologies among APs using the Watts-Strogatz model [30]
with k = 4 and p = 0.3. For the small-sized problem with 5 APs, we
added 20 arti�cial network nodes to construct the topology.We then
randomly picked 5 nodes, each connected to an edge computing
node through an in�nite-capacity link. Deployment costs were
generated in a normal distribution N(µ,� 2

) with µ = 1000 and
� = 200, while the ESP’s cost budget was 3300. For the pathbook,
we ran the k-shortest path algorithm to generate 3 min-hop paths
for each AP-host pair. Such a number has been reported in [16]
to be able to admit over 90% of the maximum �ow tra�c in a
typical network. We simulated two scenarios: a normal scenario
where link capacities (except for links to edge nodes) were �xed at
5 Gbps and delays were generated in N(10, 4) ms, and a congested
scenario where capacities were downgraded to 2 Gbps and half
edge nodes randomly selected in each time slot had 50⇥ prolonged
connection delays (simulating about half packets experiencing 1s
retransmission timeouts due to host congestion).

By default, we set �1=�2=0.5 and � =0.95. For convergence, we
set � =10�3. To reduce random noise, we averaged results over 10
independent runs on inputs generated with di�erent seeds. We im-
plemented all algorithms in Python, where LPs/MILPs were solved
using MOSEK [2]. Running time-related simulations were run on a
Windows PC with Hex-Core 3.2GHz CPU and 16GB memory.

5.2 Experiment Results
5.2.1 Mean vs. CVaR. Fig. 2 shows the trade-o� between expecta-
tion and CVaRwith� and (�1, �2) for the training set.We conducted
simulations on the medium problem size and with normal load. In
Fig. 2(a), we varied � from 0.01 to 0.99. With higher con�dence
� , the CVaR that measures the worst-case delay beyond such a
con�dence is higher. When � is close to 0, the CVaR converges



Robust Resource Provisioning in Time-Varying Edge Networks Mobihoc ’20, October 11–14, 2020, Boston, MA, USA

to the expectation; when � is close to 1, the CVaR approaches the
worst-case performance observed among all samples. However,
optimizing the solution with a higher � has little impact on the
expected value. In Fig. 2(b), by changing �1 (with �xed �2), we can
optimize di�erent combinations of expectation and CVaR. A higher
�1 results in a lower expected value but a higher CVaR. In practice,
ESP can �ne-tune these parameters to �nd its best trade-o�.

(a) Service delay with varying � (b) Service delay with varying �1
Figure 2: Trade-o� between sample mean and CVaR

5.2.2 Time-Varying vs. Time-Agnostic. Fig. 3 compares two model-
ing choices: time-varying (T-Var) and time-agnostic (T-Ago). Both
models were solved using Algorithm 1. In T-Ago, all samples were
�atten out across time slots, and the problem was solved as if there
was just one time slot. We ran our simulations in the small setting
with congested load, and varied the number of time slots from 2 to
24. Remember we used average demands in a time slot as a sample.
With more slots, the input includes more samples (representing
more dynamics), and hence both models lead to higher CVaR and
thus higher objective value. T-Var has a growing performance
advantage over T-Ago, because of the former’s ability to adjust
to di�erent demand and network patterns at di�erent times and
perform �ner-grained optimization with more slots.

Figure 3: Objective with time-varying or �xed provisioning

5.2.3 Optimal vs. Heuristic. Fig. 4 shows the training and testing
objective values obtained with di�erent host numbers, where we
compared our algorithm to two heuristics in terms of the quality
of solution (objective value). Here, REP refers to our algorithm;
RAND refers to a random host selection heuristic with NPR–NE
solved using our Phase-II; AVG is a heuristic that simply optimizes
the average delay for each time slot when delays and demands are
simply averaged over all samples, which is solved in one integrated
MILP. We ran our simulations in the medium setting with normal
load. With more hosts, the objectives of REP and AVG are gener-
ally decreasing. RAND, however, has �uctuating objective values
due to random deployment. Among the algorithms, REP naturally
achieves the lowest objective value due to its optimality, though
AVG has performance not signi�cantly worse than ours. However,
we emphasize that our advantageous solution will constantly im-
pact service performance in the long run after deployment, based
on the test sample results in Fig. 4(b). Hence it is worthwhile to
improve performance using our algorithm in initial provisioning.

(a) Training objective value (b) Testing objective value

Figure 4: Comparison of our algorithm with heuristics

5.2.4 E�iciency Enhancement. Finally, we evaluate the e�ciency
enhancement techniques in Fig. 5.We compared Full (our algorithm
with all three techniques), to !Multi (Fullwithoutmulti-cut), !FFFB
(Full without FFFB), and !Ana (Full without the analytical dual
solution and solves Phase-II slave duals through direct LP solving).
We ran our simulations in the small setting with normal load. As
we can see, each technique achieves multifold improvement of
convergence speed. Since these techniques are orthogonal to each
other, the overall speed-up is in two orders of magnitude, which
demonstrates the e�ectiveness of these techniques.

Figure 5: Convergence with/without e�ciency techniques

6 RELATEDWORK
6.1 Resource Allocation in Edge Computing
There has been two categories of e�orts on edge resource alloca-
tion. One focuses on allocating non-network resources, stemming
from existing research on distributed computing. Most such e�orts
consider �xed network allocations and statistics (e.g., delay). Ex-
amples include task scheduling [8, 26, 38], task o�oading / service
placement [10, 28, 29, 32], resource allocation [9], caching [34], etc.
The other recognizes criticality of the network in service perfor-
mance, and employs active network planning to best utilize net-
work information and/or allocate network resource. For instance,
Gao et al. [12] explored how access networks selection can im-
prove service QoS. Josilo et al. [13] and Liu et al. [19, 20] studied
multi-dimensional resource allocation including both computing
and network resources. Yu et al. [37] �rst identi�ed the importance
and challenge of complex edge network topologies, and proposed
approximation schemes for QoS-guaranteed joint service deploy-
ment and network provisioning for real-time applications. Besides,
Poularakis et al. [23], Ouyang et al. [22] and Meng et al. [21] also ex-
plored joint service placement and routing with storage, migration
cost, and task deadline considerations, respectively.

This paper uses a similar service model as [37], where a service
processes continuous data streams. However, this paper considers
more practical factors, including deployment costs, time-varying
and uncertain demands and network condition, robustness, etc. We
note that robustness in edge resource allocation has yet been well
explored, and has only been studied in some very recent work [18].
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6.2 Other Related Work
Besides edge resource allocation, other related problems include
virtual network or infrastructure embedding (VNE/VIE) [11] and
service function chaining (SFC) [4]. Few e�orts on these problems
have explored the time-varying demands and network condition.
Exceptions include Xie et al. [33] for VIE and Li et al. [17] for SFC.
Xie et al. [33] extracted time-varying characteristics of peak appli-
cation demands via pro�ling, and then made bandwidth allocation
accordingly. Li et al. [17] used a time-varying model to compute
correlations between service functions for joint deployment. Both
regarded the time-varying demands as deterministic or estimatable,
and did not consider robustness when facing uncertain dynamics.

Conventionally, CVaR is a riskmeasure widely used in economics
and �nance, notably in portfolio optimization [24]. However, it
has recently found use in computing and networking for robust
optimization as well. For example, Rullo et al. [25] and Yu et al. [36]
both used CVaR to represent and optimize security risks in IoT.

7 CONCLUSIONS
In this paper, we studied robust edge resource provisioning with
time-varying demands and network conditions. For an edge service,
the service provider employs a three-stage approach, including
service deployment, network provisioning, and performance esti-
mation. We proposed a time-slotted stochastic model to capture
the temporal-spatial demand distributions observed in real-world
datasets.We introduced awidely used riskmodel in economics, Con-
ditional Value-at-Risk, which enables trade-o� between expected
performance and robustness. Provisioning was formulated as a
three-stage sample-based stochastic optimization problem. Based
on the problem structure, we proposed a nested Benders decom-
position approach to optimally solve the problem, and described
several e�ciency enhancement techniques to drastically speed-up
convergence. We presented results from real dataset-based simula-
tions, which demonstrated the advantages of the time-varying and
robustness models, the proposed algorithm compared to heuristics,
and the e�ciency enhancement techniques, respectively.
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