
QoS-aware and Reliable Traffic Steering for Service
Function Chaining in Mobile Networks

Ruozhou Yu, Student Member, IEEE, Guoliang Xue, Fellow, IEEE, Xiang Zhang, Student Member, IEEE

Abstract—The ever-increasing mobile traffic has inspired
deployment of capacity and performance enhancing network
services within mobile networks. Owing to recent advances in
network function virtualization, such network services can be
flexibly and cost-efficiently deployed in the mobile network as
software components, avoiding the need for costly hardware
deployment. Nevertheless, this complicates network planning by
bringing the need for service function chaining. In this paper,
we study mobile network planning through a software-defined
approach, considering both quality-of-service and reliability of
different classes of traffic. We define and formulate the traffic
steering problem for service function chaining in mobile net-
works, which turns out to be NP-hard. We then develop a
fast approximation scheme for the problem, and evaluate its
performance via extensive simulation experiments. The results
show that our algorithm is near-optimal, and achieves much
better performance compared to baseline algorithms.

Keywords—Software-defined networking, mobile networks, ser-

vice function chaining, quality-of-service, reliability

I. INTRODUCTION

The recent years have witnessed a drastic growth on global
mobile traffic, due to the prevalent use of personal mobile
devices and the emergence of the internet-of-things (IoT).
Billions of devices are connected via mobile networks, posing
a severe challenge to current mobile infrastructures. More-
over, the greatly abundant mobile and IoT applications have
very heterogeneous requirements, including quality-of-service
(QoS), security, availability, etc. Satisfying these requirements
is difficult for current mobile networks, largely due to their
hierarchical nature: most QoS and security features are imple-
mented at the gateway or in the cloud, in a centralized manner.
The gateway, with the need to both serve the huge amount of
traffic and provide fine-grained network control, becomes a
severe performance bottleneck of the mobile network.

There have been many efforts in addressing this perfor-
mance bottleneck. The key idea is to resolve as much traffic
as possible within the mobile network, alleviating the load on
the gateway. One promising method is to deploy capacity and
performance enhancing network services, also called middle-
boxes, to provide in-network traffic processing before traffic
reaches the gateway. These include security components such
as firewall, intrusion detection/prevention system (IDS/IPS)
and deep packet inspection (DPI), network optimization tools
such as load balancer (LB) and TCP optimizer, network
address translator (NAT), etc. Deploying network services can
bring a lot of benefits, such as early resolution of useless or
malicious traffic, load balancing, security enhancement, etc.

Yu, Xue and Zhang ({ruozhouy, xue, xzhan229}@asu.edu) are all with
Arizona State University, Tempe, AZ 85287. This research was supported in
part by NSF grants 1461886 and 1704092. All correspondences should be
addressed to Guoliang Xue.

Traditionally, each network service is implemented via ded-
icated hardware pieces, hence can only be deployed at specific
locations (most likely at the gateway) due to cost issue. Thanks
to the recent advances in network function virtualization
(NFV), many network services can now be implemented as
software components hosted on general-purpose computation
platforms at the network edge, such as fog computing nodes
within the mobile network. Edge deployment of network ser-
vices has several advantages. First, this alleviates the excessive
traffic load at the gateway. Second, in-network processing can
effectively reduce traffic size in many scenarios, e.g., data
preprocessing for big data analytics, or preventing distributed
deny-of-service (DDoS) attacks. Third, this reduces the delay
experienced by mobile traffic, especially those transmissions
whose both end-points reside in the mobile network (e.g.,
machine-to-machine communications). With the emergence of
fog computing [2], network services can be flexibly distributed
in the network, which further helps in network optimization to
balance and resolve mobile traffic load.

Nevertheless, benefits often do not come without a cost.
Along with the enhanced performance and enriched flexibility,
comes the increased complexity for service function chaining
(SFC). In SFC, each traffic class is assigned a service function
chain, which is a sequence of network services (also called
service functions) that the traffic needs to pass through before
exiting the network. Different traffic classes may have different
service function chains, due to their various QoS, security and
reliability requirements. An important problem is to steer each
class of traffic through its required network services in the
given order, wherein both routing and bandwidth allocation
need to be determined based on the traffic class’s requirements.

In this paper, we study the traffic steering problem in
mobile networks. We take a software-defined approach, where
a centralized controller collects global network information,
and makes joint routing and allocation decisions for all traf-
fic classes together. A software-defined approach commonly
achieves better routing and resource optimization, compared
to distributed or local optimization approaches. We formulate
the QoS-aware and Reliable Traffic Steering (QRTS) problem
in mobile networks, considering heterogeneous requirements
of traffic classes, including QoS (throughput and delay), relia-
bility, security and type-of-transmission constraints, etc. Both
QRTS and its optimization version (OQRTS) are proved to
be NP-hard. We then propose a Fully-Polynomial Time Ap-
proximation Scheme (FPTAS) for the optimization problem.
Through extensive simulation experiments, we validate that
our proposed algorithm produces near-optimal solutions, and
greatly outperforms two baseline heuristic algorithms.

Our main contributions are summarized as follows:

• To the best of our knowledge, we are the first to formulate

1

the traffic steering problem in mobile networks with QoS
and reliability requirements, and prove its NP-hardness.

• We develop a Fully-Polynomial Time Approximation
Scheme for the optimization problem.

• We evaluate the performance of our proposed algorithm
via extensive simulation experiments, which validates the
near-optimal performance of our algorithm.

The rest of this paper is organized as follows. In Section II,
we introduce existing work related to this paper. In Section III,
we present our network and service model. In Section IV, we
formally define and formulate the QRTS problem and its op-
timization version, and prove that both problems are NP-hard.
In Section V, we then propose our algorithm for the problem,
and analyze its performance guarantee and time complexity.
In Section VI, we present our performance evaluation results.
In Section VII, we conclude this paper.

II. BACKGROUND AND RELATED WORK

A. NFV and SFC

NFV has been recognized as one of the enabling tech-
nologies to next-generation mobile networks [13], [21]. Var-
ious network components can be implemented via virtual-
ization [13], including gateway, mobility support, charging,
etc. In addition, traditional services like firewall, IDS/IPS,
network optimizer and NAT, can also be implemented in
mobile networks based on operator and user demands. Recent
advances in NFV enable flexible and cost-efficient deployment
of various network services in mobile networks [9], [17], [20].

SFC is a problem arisen in network management in the
presence of network services. Gember et al. [8] proposed a
network orchestration layer, in which issues such as elastic
scaling, flexible placement and flow distribution are addressed.
Zhang et al. [31] studied SFC in the view of network protocols,
and proposed a heuristic solution for SFC-aware network ser-
vice placement. Bari et al. [1] studied service chain embedding
(joint traffic steering and network service placement), and
proposed another heuristic solution. Rost et al. [26] proposed
the first approximation algorithm for service chain embedding,
though the approximation is not constant-ratio. For solely the
traffic steering problem, Cao et al. [3] proposed an FPTAS,
which is similar to the result reported in this paper. However,
their problem does not consider traffic QoS, hence is not NP-
hard. Our problem considers the heterogeneous QoS require-
ments of applications, and is NP-hard, hence an FPTAS is the
best possible algorithm that we can expect unless P = NP .
Guo et al. [11] studied traffic steering with pre-defined path
sets, which are not assumed in our paper. The applications of
SFC in mobile networks have been summarized in [12].

Failure of network services can be frequent and can have
a large impact on the performance of applications and ser-
vices [24], hence is one of the major considerations in this
paper. Rajagopalan et al. [25] proposed a Software-Defined
Networking (SDN) based replication framework for network
services. Sherry et al. [27] proposed a log-based recovery
model for network services or middleboxes, which can be
used to fast recover failed network services. Fan et al. [5] and
Ye et al. [29] studied the problem of reliable service chain
embedding, and proposed different heuristic algorithms based
on both dedicated backup and shared backup provisioning.

Kanizo et al. [18] proposed a network-agnostic solution for
network service backups based on bipartite matching. The
above efforts all focus on providing full recovery of the failed
network services. On the contrary, we argue that this “all-or-
nothing” protection is an overkill for many applications, as
shown in existing work [30]. Therefore we propose a “soft”
reliability mechanism, such that only a bounded portion of
throughput is affected during an arbitrary service failure.

B. Software-defined Mobile Networks

SDN has recently been applied to facilitate network con-
figuration and management in various network environments,
including the mobile networks. Different usages of SDN in
mobile networks have been studied, including resource al-
location in the Radio Access Networks (RANs) [10], traffic
control in the Mobile Core Networks (MCN) [15], topology
reconfiguration [23], etc. Our approach utilizes the centralized
control as in the above, but considers its application in QoS-
aware and reliable traffic steering for SFC in mobile networks.

III. SYSTEM MODEL

A. Network Topology

The SDN controller aggregates global network information.
The network is modeled as a directed graph G = (V,E), where
V is the set of nodes, and E is the set of links. A mobile
network consists of many heterogeneous nodes, including radio
access points (RAPs), core switches, standalone fog nodes, the
central cloud, and the gateway towards the Internet. The link
set also consists of heterogeneous links, including high-speed
fronthaul/backhaul fibre, digital subscriber lines, wireless and
satellite channels, etc. Different links have different attributes
including QoS, security, etc., and thus can carry different types
of traffic. We consider two QoS parameters for each link:
bandwidth and delay. For each link e 2 E, we denote be > 0

as its capacity, and de > 0 as its transmission delay.

Note that we do not require a physically centralized con-
troller architecture. A logically centralized controller (with a
shared global view) is sufficient. A hierarchical control plane
is also helpful in distributing the computational load in the
mobile network. Distributed implementation of our proposed
algorithm is out of the scope of this paper, and hence is omitted
due to page limit.

B. Service Functions

The mobile network is deployed with heterogeneous net-
work services, also called service functions, for in-network
processing of user traffic. For example, signal processing may
be virtualized and flexibly deployed on local fog nodes or in
the cloud, due to recent advances in Software-Defined Radio
(SDR) [16] and NFV. Different signal processing steps can be
virtualized into independent functions, which can be deployed
on different nodes. As modern RANs employ heterogeneous
radio access technologies (RATs), different RATs may require
different types and sequences of service functions for signal
processing. On the other hand, the network can offer other
network services for enhanced security and performance on the
network edge [12], including firewall, intrusion detection, load
balancer, etc. Utilizing NFV, these network services can also be
implemented as virtualized software components, and flexibly

2

deployed on fog nodes. Deployment of service functions at the
network edge benefits from its low latency and high location
flexibility, compared to the traditional cloud-based deployment.

Formally, we use M = {m
1

, · · · ,m|M |} to denote the
set of service functions provided by all nodes in the RAN.
Each service function may have multiple instances, deployed
at different locations. We use Vm ✓ V to denote the set of
nodes that are deployed with service function m 2 M , and
Mv ✓M as the set of service functions deployed on node v 2
V . For each service function m 2Mv deployed on node v, we
are concerned with two attributes: bv,m > 0 as its processing
capacity, and dv,m > 0 as its processing delay.

We assume available service functions have already been
deployed in the network. Service function placement is out of
the scope of this paper, and will be studied in future work.

C. Traffic Model

Traffic is aggregated and classified based on its access/exit
points, QoS requirements, service function chain (service chain
for short), types of traffic, and reliability requirement. In
mobile networks, two most important QoS attributes are band-
width and transmission delay. Denote all traffic classes (TCs)
in the network as C = {C

1

, · · · , C|C|}. Each TC is denoted as
a 7-tuple Cj = (sj , tj , Bj , Dj ,⇧j , Tj , rj), where sj , tj 2 V
denote the access and exit nodes respectively, Bj > 0 denotes
the bandwidth demand, Dj > 0 denotes the maximum delay
bound, ⇧j denotes its service chain, Tj denotes the per-stage
traffic type for each traffic stage defined in the service chain,
and rj > 0 denotes the reliability requirement. Explanation of
the reliability requirement is deferred to Section III-E.

Each TC’s service chain is defined as a sequence of
service functions, ⇧j = (⇡j

1

, · · · ,⇡j
j
), where each ⇡j

k 2 M
denotes a service function required by the TC. The service
function chaining requirement specifies that each packet of
the TC originates from sj , passes through all required service
functions in the order given in ⇧j , and exits at tj . We assume
each service chain contains only distinct service functions.

The chaining requirement splits transmission of the TC into
(j + 1) stages: sj ! ⇡j

1

, ⇡j
k ! ⇡j

k+1

for k = 1, . . . ,j � 1,
and ⇡j

j
! tj . Each stage of traffic may belong to a different

traffic type, and can be carried on only a subset of links. For
example, in Cloud-RANs, the uplink traffic enters the network
as wireless radio signals; before signal processing, such traffic
can only be transmitted along high-speed fronthaul fibre which
supports the Common Public Radio Interface (CPRI). On the
other hand, traffic already through some security functions can
no longer be transmitted via potentially insecure links. These
are expressed in Tj = {T j

1

, · · · , T j
j+1

}, where T j
k ✓ E is the

subset of links that can carry the stage-k traffic of Cj .

D. Feasible Routing Graph

We first define the feasible routing paths for TCs. Given
network G and a TC Cj , a path p in G is feasible for Cj iff

1) p originates from sj and ends at tj ;
2) p visits all service functions ⇧j = (⇡j

1

, · · · ,⇡j
j
) in the

given order; and
3) p has total transmission and processing delay within Dj .

Access
Switch

Firewall

Load
Balancer

Exit
Switch

TC's Service Chain Routing Graph

Abstract Links
(Firewall)

Abstract Links
(Load Balancer)

Layer 1

Layer 2

Layer 3

Fig. 1: A TC’s service function chain and routing graph.

To better establish the feasibility constraints of a rout-
ing path, we construct a per-TC routing graph Gext

j =

(V ext
j , Eext

j) from the original graph G, as shown in Fig. 1.
Gext

j has (j + 1) layers, each layer k corresponding to one
copy of the subgraph of G that contains all nodes in V and
all links in T j

k ; this enforces the traffic type constraints. We
denote vjk 2 V ext

j as the copy of node v 2 V in layer-k of
Gext

j , and ejk 2 Eext
j as the copy of link e 2 E in layer-

k of Gext
j . We call link e the prototype of ejk, denoted by

proto(ejk); we also call ejk an extended link of e. Link ejk
has the same transmission delay de as its prototype. Further,
we establish abstract links between consecutive layers. For
each service function ⇡j

k 2 ⇧j , we establish an abstract link
from the copy of each node v 2 V⇡j

k
in the k-th layer, to

its copy in the (k + 1)-th layer. We denote this abstract link
as ej,kv = (vjk, v

j
k+1

), and let it have delay dv,⇡j
k

(processing
delay of the instance). We use the pair (v,⇡j

k) to denote the
prototype of link ej,kv , also denoted by proto(ej,kv); ej,kv is thus
an extended link of prototype (v,⇡j

k).

Let sj
0

be node sj at layer 0 of Gext
j , and tjj

be tj at
layer j of Gext

j . We assume that each routing graph Gext
j is

(sj
0

, tjj
)-connected, meaning that there is a routing path from

sj
0

to every node v 2 V ext
j , and there is a routing path from

every node v 2 V ext
j to tjj

. Nodes not satisfying this condition
can be safely removed from the routing graph, as it does not
contribute to the connectivity between sj

0

and tjj
.

For simplicity, we aggregate all TCs’ routing graphs into
a giant one, denoted as Gext

= (V ext, Eext
), where V ext

=S
Cj2C V

ext
j , and Eext

=

S
Cj2C E

ext
j . Each TC’s subgraph

Gext
j is maximally (sj

0

, tjj
)-connected in Gext, meaning that

adding any node v /2 V ext
j makes it not (sj

0

, tjj
)-connected.

3

Given Gext, the feasible path set of Cj is defined as all
paths from sj

0

to tjj
, each with the sum of link delays no

greater than Dj . Note that the processing delays of service
function instances have already been accounted for in their
extended links’ delays. We use Pj to denote the feasible path
set for Cj , and let P =

S
Cj2C Pj . Without loss of generality,

we assume that each TC has a disjoint feasible path set Pj .

The following notations are defined for simplicity. We
denote E⌫ = {(v,m) |m 2 M, v 2 Vm} as the set of
all service function instances. E = E [E⌫ , also called the
prototype set, denotes the set of all original physical links and
service function instances. We then use Eext

(e) to denote all
extended links of the same prototype e 2 E , i.e., all links
that share the same capacity bound be. We also use E(p) and
E⌫(p) = E(p)\E⌫ to denote the sets of all prototypes and only
service function prototypes, respectively, used by path p. ⌘p(e)
denotes the number of times for which prototype e’s extended
links appear in path p. Note that ⌘p(e)  1 if e 2 E⌫ , as each
service function chain contains only distinct service functions.

E. Reliability

Network service failures can downgrade or even halt the
transmission of user traffic, which must be tackled to assure
service continuity [24]. On the other hand, it has been revealed
that the traditional “all-or-nothing” protection is actually an
overkill for many data applications [30], due to the excessive
resource consumption to provide such protection.

In this paper, we follow existing work and seek a “milder”
way for improving service availability [30]. Instead of provid-
ing full recovery, we seek to bound the amount of throughput
loss due to an arbitrary single service function instance failure
(single service failure for short). Specifically, each TC Cj 2 C
has a reliability parameter rj 2 (0, Bj], denoting the maximum
tolerable throughput loss that Cj may suffer from any single
service failure; rj = Bj means no protection for Cj .

IV. PROBLEM STATEMENT

A. Problem Description and Formulation

In this paper, we study the traffic steering problem in
mobile networks. Specifically, given the network G and the
set of TCs C, the network operator’s goal is to find a subset of
feasible routing paths, as well as allocate bandwidth for each
path, to fulfill the bandwidth demand of each TC, meanwhile
satisfying both capacity bounds and reliability requirements.

Definition 1 (Bandwidth allocation). Let P 2 P be a subset of
feasible routing paths. A bandwidth allocation of P is defined
by a mapping L : P 7! R+, where R+ is the positive real
number set. We say that L is a feasible bandwidth allocation of
P iff for each prototype e 2 E ,

P
p2P :e2E(p) ⌘e(p)L(p)  be.

The aggregate bandwidth of P , denoted by b(P), is the sum
of bandwidth allocated on all paths in P :

b(P) =

X

p2P

L(p).

Definition 2 (QRTS). Given the network G = (V,E), and
the TC set C, the QoS-aware and Reliable Traffic Steering
(QRTS) problem in mobile networks is to find a tuple � =

(P,L), where P ✓ P is a subset of feasible routing paths, and
L is a feasible bandwidth allocation of P , such that

1) let Pj ✓ P be the set of feasible routing paths of TC Cj

in P , then b(Pj) � Bj for each TC Cj 2 C; and

2) during an arbitrary single service failure, at most rj
bandwidth is lost for each Cj 2 C.

B. Computational Complexity

Theorem 1. QRTS is NP-complete.

Proof: First, QRTS is in NP , as checking all constraints
takes polynomial time. Consider the special case of QRTS
where there is only one TC with an empty service chain, no
link excluded from E in Tj , and no reliability requirement
(rj = Bj). Therefore, there is only one layer in its routing
graph, which is the same as the original topology. In this case,
we obtain the Multi-Path routing with Bandwidth and Delay
constraints (MPBD) problem on a general graph, which has
been proven NP-complete in [22]. As a known NP-complete
problem is a special case of QRTS, the theorem follows.

C. Optimization Formulation

The QRTS problem is an NP-complete decision problem.
We further define the following optimization version of QRTS:

Definition 3 (OQRTS). Given the network G = (V,E), and
the TC set C, the Optimal QoS-aware and Reliable Traffic
Steering (OQRTS) problem in mobile networks is to find a
tuple � = (P,L), where P ✓ P is a subset of feasible routing
paths, and L is a feasible bandwidth allocation of P , such that

1) let Pj ✓ P be the set of feasible routing paths of TC Cj

in P , then b(Pj) � ⇠ ·Bj for each TC Cj 2 C;

2) during an arbitrary single service failure, at most rj
bandwidth is lost for each Cj 2 C; and

3) ⇠ is maximized.

In the OQRTS problem, the network operator aims to
maximize the traffic scaling ratio ⇠, defined as the minimum
ratio between the aggregate bandwidth and the demand of any
TC, subject to the feasible path set, feasibility of bandwidth
allocation and reliability constraints. If an OQRTS instance
has an optimal solution of ⇠⇤ � 1, the corresponding QRTS
instance is feasible, and vice versa.

With L(p) defined as the per-path variable of bandwidth
allocation, and ⇠ as the minimum scaling ratio, we formulate
the OQRTS problem as the following linear program (LP):

max ⇠ (1a)

s.t.
X

p2Pj

L(p) � ⇠Bj , 8Cj 2 C (1b)

X

p2P:e2E(p)

⌘p(e)L(p)  be, 8e 2 E (1c)

X

p2Pj :e2E⌫(p)

L(p)  rj , 8Cj 2 C, e 2 E⌫ (1d)

L(p), ⇠ � 0. 8p 2 P

4

Explanation: Objective (1a) is to maximize the traffic scaling
ratio ⇠. Constraint (1b) defines the scaling ratio for each TC:
(

P
p2Pj

L(p))/Bj � ⇠. Constraint (1c) enforces per-prototype
capacities. Constraint (1d) enforces the reliability for each TC
Cj . Specifically, for each service instance e 2 E⌫ , the amount
of traffic of Cj through e must not exceed the maximum
tolerable throughput loss, denoted by rj . By this constraint,
any single function instance failure will affect at most rj
bandwidth, hence satisfying the reliability requirements.

While the above formulation is a linear program (LP),
it can have an exponential number of variables due to the
potentially exponential number of feasible routing paths in a
given graph. This prevents solving the problem using standard
LP techniques. Note that since the decision problem QRTS is
NP-hard, so is the optimization problem OQRTS. In the next
section, we propose our approximation algorithm for OQRTS.

V. FULLY POLYNOMIAL-TIME APPROXIMATION SCHEME

In this section, we design an FPTAS for the OQRTS
problem. Since the problem is NP-hard, an FPTAS is the
best algorithm one can hope for, unless P = NP .

Definition 4 (FPTAS). Given a maximization problem ⌦, an
algorithm A is said to be a Fully-Polynomial Time Approx-
imation Scheme (FPTAS) for ⌦, iff for any instance of ⌦

with optimal objective value ⇣⇤, given any ! 2 (0, 1), A can
produce a feasible solution with objective value ⇣ � (1�!)·⇣⇤,
within time polynomial to both the input size and 1/!.

A. Dual Analysis

We first write the dual program of (1). Define dual variable
z(j) for Constraint (1b) with each Cj 2 C, l(e) for Con-
straint (1c) with each e 2 E , and '(j, e) for Constraint (1d)
with each Cj 2 C and e 2 E⌫ , the dual program is as follow:

min

X

e2E
bel(e) +

X

Cj2C

X

e2E⌫

rj'(j, e) (2a)

s.t.
X

e2E(p)

⌘p(e)l(e) +
X

e2E⌫(p)

'(j, e) � z(j),

8Cj 2 C, p 2 Pj (2b)
X

Cj2C
Bjz(j) � 1, (2c)

z(j), l(e),'(j, e) � 0. 8Cj 2 C, e 2 E

Explanation: Objective (2a) accounts for the constants in
Constraints (1c) and (1d). Constraint (2b) is the dual constraint
for primal variable L(p). Constraint (2c) is the dual constraint
for primal variable ⇠. For simplicity of notations, although
'(j, e) is only defined for each Cj 2 C and e 2 E⌫ , we
extend its definition to include Cj 2 C and any e 2 E , and
explicitly let '(j, e) = 0 for e 2 E \ E⌫ .

Based on an observation similar to the one in [7], we have
the following two lemmas:

Lemma 1. At any optimal solution of Program (2), Con-
straint (2c) is binding, i.e., equality (rather than strict inequal-
ity) holds.

Lemma 2. At any optimal solution of Program (2), there
exists at least one path p 2 Pj for any Cj 2 C, such that
Constraint (2b) with Cj and p is binding.

Proof: Assume that at an optimal solution, Constraint (2b)
for any TC Cj 2 C and path p 2 Pj is not binding. It is obvious
that we can reduce the value of any l(e) or '(j, e) that has
a positive value, by an arbitrarily small amount. The resulted
solution is still feasible, but has a strictly smaller objective
value than the optimal solution, leading to a contradiction.
To prove Lemma 1, observe that if Constraint (2c) is not
binding, then we can reduce the value of z(j) for all Cj 2 C
by an arbitrarily small amount, which will make every Con-
straint (2b) to be unbinding, leading to the same contradiction.
To prove Lemma 2, assume that there exists Cj 2 C such
that Constraint (2b) is not binding for any p 2 Pj , then we
can increase the value of z(j) by an arbitrarily small amount,
which will make Constraint (2c) unbinding. This leads to the
same contradiction as above. Hence both lemmas follow.

Based on Lemma 2, it is now clear that at any optimal solu-
tion, z(j) = minp2Pj{

P
e2E(p) ⌘p(e)l(e)+

P
e2E⌫(p)

'(j, e)}.
In other words, z(j) is equal to the shortest path length in Pj

regarding the per-link length function &(") = l(") + '(j, ")
for " 2 Eext, where l(") = l(proto(")), and '(j, ") =

'(j, proto(")), respectively.

Lemmas 1 and 2 help us refine the dual program into a
more concise form, removing variables z(j). Define D(l,') =P

e2E bel(e) +
P

Cj2C
P

e2E⌫
rj'(j, e) (the dual objective

function), and ↵(l,') =
P

Cj2C Bj�j(l,'), where �j(l,') =
minp2Pj{

P
"2p &(")} is the shortest path length in Pj under

length function & . The dual problem is equivalent to finding
length functions l and ' that minimize D(l,')/↵(l,'):

min

l,'�0

D(l,')

↵(l,')
. (3)

B. Primal-Dual Algorithm

Our approximation scheme is based on a similar design as
in [6], [7]. The intuitive is to greedily push flow along the
dual-shortest feasible path for each TC, meanwhile updating
the lengths such that the length of each prototype increases
exponentially in the amount of its constraint violation. After a
number of rounds, the flow is distributed approximately evenly
in the network. By scaling the final flow with the bounded
link lengths, we obtain a feasible solution that approximates
the optimal. The algorithm is shown in Algorithm 1.

Lines 1–2 of Algorithm 1 initialize the length of each
prototype, where � is a value to be determined in Section V-D.
Pj and L denote the paths used by Cj and the bandwidth
allocation over all paths respectively, both initialized to empty.
After constructing the routing graph, we initialize the lengths
of all extended links the same as their prototypes. The algo-
rithm proceeds in phases (Lines 6–19), each phase consisting
of |C| iterations (Lines 8–18). In the j-th iteration in each
phase, the algorithm pushes Bj units of flow for TC Tj , which
is done in steps (Lines 10–17). In each step, the algorithm
finds the shortest feasible path p̃ for TC Tj under length
function & , and pushes � units of flow through p̃, where �
is defined by the residual flow demand B0

j , the bottleneck

5

Algorithm 1: Primal-Dual Algorithm for OQRTS
Input: Topology G, TCs C, tolerance !
Output: Scaling ratio ⇠, path sets {Pj}, bandwidth L

1 Initialize l(e) �/be for 8e 2 E ;
2 Initialize '(j, e) �/rj for 8Cj 2 C, e 2 E⌫ , and

'(j, e) 0 for 8Cj 2 C, e 2 E \ E⌫ ;
3 Initialize Pj ;, L ;;
4 Construct the routing graph Gext, and let l(") l(e),

'(j, ") '(j, e) and c" = ce for
8" 2 Eext, e = proto(");

5 ⇢ 0;
6 while D(l,') < 1 do
7 ⇢ ⇢+ 1;
8 for each TC Cj 2 C do
9 B0

j Bj ;
10 while B0

j > 0 do
11 p̃ arg min

p2Pj

{
P
"2p

&(")};

12 � min{B0
j , min

e2E(p̃)
{ be
⌘p̃(e)

}, rj};

13 Pj Pj [{p̃};
14 L(p̃) L(p̃) + �, B0

j B0
j � �;

15 l(e) l(e)(1 + ✏ · �⌘p̃(e)
be

) 8e 2 E(p̃), and
l(") l(e) for 8" 2 Eext

(e);
16 '(j, e) '(j, e)(1 + ✏ �

rj
) 8e 2 E⌫(p̃), and

'(j, ") '(j, e) for 8" 2 Eext
(e);

17 end
18 end
19 end
20 ⇠ (⇢� 1)/ log

1+✏ 1/�;
21 L(p) L(p)/ log

1+✏ 1/� for 8Cj 2 C, p 2 Pj ;
22 return (⇠, {Pj},L).

capacity mine2E(p̃){be/⌘p̃(e)}, and the reliability requirement
rj , whichever is the smallest. Since p̃ may pass through the
same prototype for multiple times, the capacity be of each
e 2 E(p) is divided by ⌘p̃(e), the number of times that it
appears in p̃. After updating Pj , L(p) and B0

j , the algorithm
updates the per-prototype lengths l(e) and the per-TC per-
function instance lengths '(j, e), in Line 15–16. The value
of ✏ is also to be determined in Section V-D. The lengths
of all extended links in the routing graph are then updated
to reflect the change of lengths of their prototypes. Note that
the resulting flow may exceed the capacity of each prototype.
However, as we will show in Section V-D, scaling the flow on
each link by log

1+✏ 1/� yields a feasible solution.

C. Approximating Shortest Feasible Paths

Algorithm 1 relies on finding the shortest feasible path for
each TC under length function & . However, since the feasible
path set of each TC only contains delay-bounded paths, this
task is non-trivial. In fact, finding the shortest delay-bounded
path is known as the Delay Constrained Least Cost path
(DCLC) problem, which is also NP-hard [28]. Nevertheless,
there exist FPTASs for the DCLC problem, which output a
path within (1 + !0

) of the shortest delay-bounded path [19],
[28]. In the next subsection, we will show that for the purpose
of our algorithm, it is sufficient to find a (1+!0

)-approximate
&-shortest path with strictly bounded delay.

D. Algorithm Analysis

Theorem 2. Given G, C and !, let !0
= ✏ =

!
4

, and � =

⇣
1�(1+!0

)✏
|E|+|E⌫ ||C|

⌘ 1+✏(1+!0)
✏(1+!0) , then Algorithm 1 outputs a feasible

solution that is within (1 � !) times of the optimal solution,
if the dual optimal objective value � � 1.

Proof: We prove by bounding the primal-dual ratio for the
solutions derived in the algorithm. The basic idea is that the
primal value increases linearly with the flow pushed in each
phase, but each link’s dual lengths increase exponentially with
the flow through it. After a polynomial number of phases, the
primal-dual ratio is then within the desired bound.

We first define some notations. For any symbol � (including
l,',�, p̃), we use �s

⇢,⌧ to denote its value after phase-⇢,
iteration-⌧ , and step-s of the algorithm, �⇢,⌧ to denote its
value after phase-⇢ and iteration-⌧ , and �⇢ to denote its value
after phase-⇢. For symbols in the form of �(l,') (including
D,↵, �j), we use �s

⇢,⌧ to denote �(ls⇢,⌧ ,'
s
⇢,⌧), and similarly

�⇢,⌧ and �⇢. We then have

Ds
⇢,⌧ 

X

e2E
bel

s�1

⇢,⌧ (e) +
X

Cj2C

X

e2E⌫

rj'
s�1

⇢,⌧ (j, e)

+ ✏�s
⇢,⌧ (1 + !0

) · �s�1

j,⇢,⌧

 Ds�1

⇢,⌧ + ✏�s
⇢,⌧ (1 + !0

) · �sj,⇢,⌧ ,
where j = ⌧ due to that in iteration-⌧ of each phase we only
consider TC Cj = C⌧ ; the first inequality is because path p̃
found in each step is a (1+!0

)-approximation of the shortest
feasible routing path; the second inequality is due to that
shortest feasible path length is monotonically non-decreasing.
Summing up the flow pushed in all steps of iteration-⌧ where
we push Bj flow in total, we have

D⇢,⌧  D⇢,⌧�1

+ ✏Bj(1 + !0
) · �j,⇢,⌧ ,

and hence

D⇢  D⇢�1

+ ✏(1 + !0
)

X|C|

j=1

Bj · �j,⇢
 D⇢�1

+ ✏(1 + !0
)↵⇢.

Let the optimal dual solution be � = min

l,'�0

{D(l,')

↵(l,')

}, we

know that D⇢

↵⇢
� �. Since we assume that � � 1, we have

D⇢ 
D⇢�1

1� ✏(1+!0
)

�

 D
0⇣

1� ✏(1+!0
)

�

⌘⇢

 D
0

1� ✏(1 + !0
)

e
(⇢�1)✏(1+!0)
�(1�✏(1+!0)) ,

where the initial objective D
0

= (|E| + |E⌫ ||C|)� due to the
initial value of l(e) and �(j, e). The last inequality is due to
(1 + x)  ex, where x =

✏(1+!0
)

��✏(1+!0
)

in the inequality.

Now, assume the algorithm stops at phase ⇢⇤, hence D⇢⇤ �
1 yet D⇢⇤�1

< 1. Taking it into the above inequality, we have
�

(⇢⇤ � 1)

 ✏(1 + !0
)

(1� ✏(1 + !0
)) ln

1�✏(1+!0
)

(|E|+|E⌫ ||C|)�

.

6

On the other hand, by the way we update lengths l(e)
and '(j, e) at Lines 15–16, each dual variable has its value
increased by at least (1 + ✏) times when the corresponding
primal constraint is filled for once, i.e., when the flow through
prototype e 2 E increases by be, or when the flow for TC
Cj through a function instance e 2 E⌫ increases by rj ,
respectively. Since D⇢⇤�1

< 1, we have l⇢⇤�1

(e) < 1/be and
'⇢⇤�1

(j, e) < 1/rj . Therefore, the flow after phase (⇢⇤ � 1)

scaled by 1/ log
1+✏ 1/� is strictly feasible, which means the

final scaling ratio ⇠ = (⇢⇤ � 1)/ log
1+✏ 1/� is feasible.

The primal-dual ratio is then bounded by

⇠

�

�
(1� ✏(1 + !0

)) · ln 1�✏(1+!0
)

(|E|+|E⌫ ||C|)�

✏(1 + !0
) · log

1+✏
1

�

.

Given the selection of ✏, !0 and �, we have ⇠
�

� 1� !.

For time complexity, we define O⇤
(f) = O(f log

O(1)

(L)),
where f is a function of the input size, and L is the number of
values in the input (independent of each value’s magnitude).

Theorem 3. The worst-case time complexity of Algorithm 1 is
O⇤

(

�

!3 |V ||E|(|E| + |E⌫ ||C|)2

max

), where 
max

= maxj{j}
is the maximum service chain length of any TC.

Proof: As above, we have ⇠⇤

�

> ⇠
�

� (⇢⇤�1)

� log1+✏ 1/�
.

By strong duality of linear programming, we have ⇠⇤

�

=

1. Therefore, the number of phases is bounded by ⇢⇤ 
d� log

1+✏ 1/�e. The number of iterations is |C| times the num-
ber of phases. In each iteration, every but the last step increases
the length of at least one l(e) or �(j, e) by (1 + ✏) times,
hence the number of steps exceeds the number of iterations
by at most (|E| + |E⌫ ||C|) log

1+✏
1+✏
� . Thus totally there are

O⇤
(

�

!2 (|C|+ |E|+ |E⌫ ||C|)) = O⇤
(

�

!2 (|E|+ |E⌫ ||C|)) steps by
the choices of ✏, !0 and �. Each step incurs one approximate
shortest feasible path computation, which by Xue et al. [28]
is computed in O(|V ext

j ||Eext
j |(1

!0 + log log log |V ext
j |)) time

in each TC’s routing graph Gext
j . Both the node set and

the link set are bounded by |V ext
j | = O(|V | · 

max

) and
|Eext

j | = O(|E| · 
max

) respectively. The theorem follows.

E. Feasibility and Demand Scaling

Theorem 2 relies on two facts: 1) the QRTS instance has
a non-zero feasible solution, and 2) the optimal dual objective
value � � 1. On the other hand, the time complexity of
Algorithm 1 is proportional to �, hence it should not be too
large. In practice, these conditions may not be satisfied. Below
we propose methods to tackle these issues.

Feasibility Checking: We first propose a method to check
instance feasibility. Observe that as long as there is at least
one feasible routing path p 2 Pj for any TC Cj 2 C, the
problem instance has a non-zero optimal objective value, as a
multi-TC flow with 0 < ⇠  minj

rj
Bj

always exists. Therefore,
as a feasibility check before running the algorithm, we first run
a shortest path algorithm (regarding link delays) for each TC
on the routing graph. If any TC Cj has the shortest path with
delay larger than its delay bound Dj , we return that no feasible
solution exists; otherwise, we proceed to the next step.

Demand scaling: The next step is to ensure � � 1; otherwise
the algorithm may not achieve the desired bound. Note that
we can scale the demands of all TCs by a common factor in
order to scale ⇠⇤, and equivalently �. Hence if we can derive a
lower bound on ⇠⇤, we can scale all demands such that � � 1.

Following the method proposed by Garg and Könemann [7]
and later on improved by Fleischer [6], we derive both a pair
of lower and upper bounds on �, by finding the feasible
routing path with maximum per-prototype capacity, denoted
by p⇤j , for each TC Cj , using a binary search on the per-
prototype capacity. Given a capacity threshold b > 0, the
computation first prunes all prototypes with capacity less than
b, and then find a delay-shortest path in the remaining graph;
if the path delay is bounded by Dj , we increase the threshold
b; otherwise we decrease b. As there are at most |E| distinct
capacity values, the binary search takes O(log(|E|)) shortest
path computations. The time complexity of finding paths for
all TCs is O(|C| log(|E|)(|E|+ |V | log(|V |max))max) if the
Dijkstra’s algorithm is used for shortest path computations.
When |C| is large, this can be further reduced by computing a
single round of all-pair shortest paths on the pruned original
graph for each of the binary search iterations, and then utilize
the auxiliary graph in [3] to compute the paths for all TCs.

Let bj = mine2E(p̃j)
{be} be the bottleneck prototype

capacity of path p⇤j . Since a flow can saturate all prototypes
at its maximum, an upper bound on the single-TC flow value
is given by |E|min{bj , rj}, taking into account the reliability
requirement of each TC. Hence an upper bound of the optimal
objective value � is given by � = minCj2C{¯bj/Bj}. On the
other hand, given the bottleneck prototype capacity bj , a flow
that only contains path p⇤j and assigns bj/(j + 1) bandwidth
to the path, is feasible for the TC itself, as a prototype can
be used for at most j + 1 times. Since there are |C| TCs
sharing the network, bj = min{bj/(j + 1)|C|, rj} yields a
lower bound on the throughput received by Cj . Hence a lower
bound of � is given by � = minCj2C{bj/Bj}.

Given these bounds, we can scale all TCs’ demands by a
factor of � (thus � by a factor of 1/�), which ensures that
the scaled dual optimal objective value � � 1. But now � can
be as large as e

� = �/�. We then use the same technique as
in [7]: if Algorithm 1 does not terminate after d2 log

1+✏ 1/�e
phases, then we know that � � 2. In this case, we double
all demands Bj (thus halving the optimal solution �), and
re-run Algorithm 1. Given the upper bound on �, this takes
O(log(

e
�)) rounds of demand scaling.

Combined with Theorem 3, we have our main theorem:

Theorem 4. Algorithm 1 (combined with feasibility checking
and demand scaling) produces a (1�!)-approximation in time
O⇤

(

1

!3 |V ||E|(|E|+ |E⌫ ||C|)2

max

+ |C||E|
max

), and hence is
an FPTAS for OQRTS.

Proof: To compute the initial bounds, it takes
O(|C| log(|E|)(|E|+ |V | log |V |)max log(max|V |)) time. By
the values of � and �, we have e

�  |E||C|max. Hence
the number of demand scaling rounds is O(log(|E||C|max)).
Each round consists of at most d2 log

1+✏ 1/�e phases in Algo-
rithm 1. By Theorem 3, each round runs in O⇤

(

1

!3 |V ||E|(|E|+
|E⌫ ||C|)2

max

) time. Combining the above and omitting the
logarithm terms, the final time complexity follows.

7

F. Extension to Multiple QoS Requirements

Our proposed model and algorithm can be extended to
incorporate other QoS requirements than delay, such as jitter,
packet drop rate, etc. In general, assume each TC considers
up to Q additive QoS parameters. We can simply replace the
DCLC FPTAS in Section V-C with a Multi-Constrained Path
(MCP) FPTAS [28]. The resulting algorithm is able to enforce
one QoS requirement strictly, while approximating the other
Q�1 requirements within a factor of (1+!0

), as shown in [28].

VI. PERFORMANCE EVALUATION

A. Experiment Settings

We implemented the following algorithms for comparison:

• PDA: Our primal-dual FPTAS (Algorithm 1). The accu-
racy parameter ! = 0.5 by default. PDA has two variants,
PDA-ND and PDA-NR, denoting the algorithms without
delay and reliability requirements respectively.

• OND: An optimal algorithm for solving the OQRTS
problem without consideration of TC delay constraints,
obtained by solving an edge-flow multi-commodity flow
LP. This yields an upper bound on the optimal solution.

• MPBDH: A flow-based heuristic which first computes a
(delay-agnostic) maximum concurrent flow for all TCs,
and then keeps finding feasible (delay-bounded) paths for
each TC until no feasible path is left; extended from [22].

• SP: A baseline heuristic that decides the traffic scaling
ratio based on shortest-path routing for each TC. As SP
is a single-path routing algorithm, its solution can never
exceed the minimum reliability ratio of any TC.

We randomly generated networks for evaluation. Topolo-
gies were generated based on the Waxman model [4]. By
default, the network had 20 nodes. The network offered 10

types of service functions, each having 3 instances randomly
deployed on nodes. Each instance had a random capacity
within [50, 100] Mbps, and a random delay within [3, 30]
ms. Connectivity parameters were set as ↵ = � = 0.6 in
the Waxman model. Each link had a random capacity within
[10, 100] Mbps, and a random delay within [1, 10] ms. In
each experiment, we generated 20 TCs with random sources
and destinations. Each TC had a random service chain with
length within [1, 5], a bandwidth demand within [3, 30] Mbps, a
delay bound within [125, 250] ms, and a reliability requirement
within [0.35, 0.65] of its bandwidth demand. The above were
the default parameters. In each set of experiments, we varied
one control parameter for evaluation under different scenarios.

Two metrics were used to evaluate each algorithm. The
traffic scaling ratio (objective function value) evaluates the
algorithm’s performance. The average running time evaluates
the algorithm’s overhead for producing the result.

We developed a C++-based simulator implementing all
the above algorithms. For OND and MPBDH, we used the
Gurobi optimizer [14] to solve the LPs. Each experiment was
conducted on a Ubuntu Linux PC with Quad-Core 3.4GHz
CPU and 16GB memory. Experiments were repeated for 20

times under the same settings to average out random noises.
Each experiment was repeated for 20 times under the same
setting, and results were averaged over all runs.

B. Evaluation Results

1) Comparison with theoretical upper bound: Fig. 2 shows
the comparison between PDA and OND. Note that the error
bars show the 95% confidence intervals around the mean. Since
OND is delay-agnostic, its optimal value yields an upper bound
on the optimal value of OQRTS. As shown in Fig. 2(a), the
solution produced by PDA is extremely close to the upper
bound produced by OND, much higher than the theoretical
guarantee (1 � !). Also, though the solution degrades with
looser accuracy parameter !, the degradation is minor. The
observed optimality gap is within 1%. The running time of
PDA, shown in Fig. 2(b), is decreasing polynomially to 1/!.
In conclusion, a loose accuracy parameter !, such as no less
than 0.5, is typically sufficient for practical use.

(a) Traffic scaling ratio vs. ω (b) Running time vs. ω

Fig. 2: Comparison with upper bound, with varying accuracy.

2) Comparison with baseline heuristics: Figs. 3 and 4 show
the comparison of PDA (including PDA-ND or PDA-NR) with
the two baselines, MPBDH and SP, under various scenarios.

Figs. 3(a) and 4(a) show the objective values and run-
ning times respectively with varying TC delay bounds. With
increasing delay bounds, both PDA and MPBDH achieve
better traffic scaling ratio. SP has consistent performance with
varying delay bounds as it only considers the shortest path.
However, PDA outperforms both heuristics drastically, with
an average improvement of 5.9⇥ compared to MPBDH and
7.9⇥ compared to SP. The enhanced performance indeed
comes with increased time complexity, as shown in Fig. 4(a)
The delay bounds have limited impact on time complexity in
Fig. 4(a). Finally, comparing PDA and PDA-ND, the delay
constraints lead to both degraded throughput and much larger
time complexity, the latter due to the computation of a delay
constrained least cost path instead of a simple shortest path.

Figs. 3(b) and 4(b) show the objective values and running
times respectively with varying TC reliability parameter (the
average ratio of maximum tolerable loss over bandwidth
demand). Increased tolerable loss results in increased traffic
scaling ratio in general, due to more bandwidth available to
each TC’s traffic at each service function instance. PDA again
outperforms both heuristics in terms of throughput, with an
average improvement of 6.1⇥ and 8.5⇥ compared to MPBDH
and SP respectively. Comparing PDA and PDA-NR, the latter
has a better throughput due to the relaxation of the reliability
requirements, and a lower time complexity due to the less
number of constraints (thus the number of dual variables) when
reliability is not considered.

Figs. 3(c) and 4(c) show experiments with varying number

8

(a) Objective vs. delay bounds (b) Objective vs. reliability (c) Objective vs. # nodes (d) Objective vs. connectivity

Fig. 3: Traffic scaling ratio with varying delay bounds, reliability requirements, number of nodes, and connectivity parameters.

(a) Running time vs. delay bounds (b) Running time vs. reliability (c) Running time vs. # nodes (d) Running time vs. connectivity

Fig. 4: Running time with varying delay bounds, reliability requirements, number of nodes, and connectivity parameters.

of nodes in the network. Increasing number of nodes leads to
increased traffic scaling ratios. However, after a certain thresh-
old, the scaling ratio derived by PDA saturates. This is because
the number of instances of each service function remains the
same, and hence the the scaling ratios are constrained by the
reliability requirements instead of the link capacities when the
number of nodes become large. The throughput achieved by
PDA surpasses MPBDH and SP significantly, with an average
improvement of 3.7⇥ and 8.2⇥ compared to MPBDH and SP
respectively. The running times increase with the number of
nodes, due to the increased number of links.

Figs. 3(d) and 4(d) show experiments with varying network
connectivity, which is controlled by parameters ↵ and � in
the Waxman model. Increased connectivity leads to increased
throughput. Comparisons among algorithms are similar to the
above. On average, PDA outperforms MPBDH and SP by
6.5⇥ and 5.4⇥, respectively. MPBDH performs worse than
SP, again due to the increased bandwidth on infeasible paths.
The running times increase with network connectivity, due to
the increase in both the problem size and the time for finding
(approximate) shortest feasible paths.

To summarize, our findings are as follows:

• Our algorithm achieves near-optimal solutions even when
the accuracy parameter is relatively loose. In general,
the optimality gap is within 1%. Thus a loosely selected
accuracy parameter is sufficient for most practical uses.

• Our algorithm outperforms both baseline heuristics
(MPBDH and SP) significantly.

• The running time overhead of our algorithm is acceptable
in practice, as network planning typically happens in

much longer periods, for example, once per several hours.

VII. CONCLUSIONS

In this paper, we studied the QoS-aware and Reliable
Traffic Steering problem for service function chaining in
mobile networks. We formulated the problem in a software-
defined approach, considering various requirements of different
classes of traffic, including service chaining, QoS, reliability,
and type-of-transmission constraints. The problem, along with
its optimization version, was proved to be NP-hard. We then
proposed an FPTAS for the optimization problem, which pro-
duces a (1� !)-approximate solution within time polynomial
to the input size and 1/!. We evaluated our algorithm through
extensive simulation experiments, which validated that our
algorithm has near-optimal performance, and achieves much
better throughput than the baseline heuristics.

REFERENCES

[1] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On
Orchestrating Virtual Network Functions,” in Proc. IEEE CNSM, 2015,
pp. 50–56.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and Its
Role in the Internet of Things,” in Proc. ACM MCC, 2012, pp. 13–16.

[3] Z. Cao, M. Kodialam, and T. V. Lakshman, “Traffic Steering in Software
Defined Networks: Planning and Online Routing,” in Proc. ACM DCC,
2014, pp. 65–70.

[4] M. Faloutsos, C. Faloutsos, and C. Faloutsos, “On Power-Law Rela-
tionships of the Internet Topology,” in Proc. ACM SIGCOMM, 1999,
pp. 251–262.

[5] J. Fan, Z. Ye, C. Guan, X. Gao, K. Ren, and C. Qiao, “GREP:
Guaranteeing Reliability with Enhanced Protection in NFV,” in Proc.
ACM HotMiddlebox, 2015, pp. 13–18.

9

[6] L. K. Fleischer, “Approximating Fractional Multicommodity Flow In-
dependent of the Number of Commodities,” SIAM J. Discret. Math.,
vol. 13, no. 4, pp. 505–520, 2000.

[7] N. Garg and J. Konemann, “Faster and Simpler Algorithms for Mul-
ticommodity Flow and Other Fractional Packing Problems,” in Proc.
ACM FOCS, 1998, pp. 300–309.

[8] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao, A. Anand,
T. Benson, V. Sekar, and A. Akella, “Stratos: A Network-Aware Orches-
tration Layer for Virtual Middleboxes in Clouds,” arXiv: 1305.0209,
2013.

[9] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “OpenNF: Enabling Innovation in Network
Function Control,” in Proc. ACM SIGCOMM, 2014, pp. 163–174.

[10] A. Gudipati, D. Perry, L. E. Li, S. Katti, and B. Labs, “SoftRAN:
Software Defined Radio Access Network,” in Proc. ACM HotSDN,
2013, pp. 25–30.

[11] L. Guo, J. Pang, and A. Walid, “Dynamic Service Function Chaining
in SDN-enabled Networks with Middleboxes,” in Proc. IEEE ICNP,
2016, pp. 1–10.

[12] W. Haeffner, J. Napper, M. Stiemerling, D. Lopez, and
J. Uttaro, “Service Function Chaining Use Cases in Mobile
Networks,” pp. 1–26, 2017. URL: https://tools.ietf.org/pdf/
draft-ietf-sfc-use-case-mobility-07.pdf

[13] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal, “NFV: State of
the Art, Challenges, and Implementation in Next Generation Mobile
Networks (vEPC),” IEEE Netw., vol. 28, no. 6, pp. 18–26, nov 2014.

[14] Http://www.gurobi.com/products/gurobi-optimizer, “Gurobi Optimizer.”
[15] X. Jin, L. E. Li, L. Vanbever, and J. Rexford, “SoftCell: Scalable and

Flexible Cellular Core Network Architecture,” in Proc. ACM CoNEXT,
2013, pp. 163–174.

[16] F. K. Jondral, “Software-Defined Radio: Basics and Evolution to
Cognitive Radio,” EURASIP J. Wirel. Commun. Netw., vol. 2005, no. 3,
pp. 275–283, 2005.

[17] M. Kablan, B. Caldwell, R. Han, H. Jamjoom, and E. Keller, “Stateless
Network Functions,” in Proc. ACM HotMiddlebox, 2015, pp. 49–54.

[18] Y. Kanizo, O. Rottenstreich, I. Segall, and J. Yallouz, “Optimizing
Virtual Backup Allocation for Middleboxes,” in Proc. IEEE ICNP,
2016, pp. 1–10.

[19] D. H. Lorenz and D. Raz, “A Simple Efficient Approximation Scheme
for the Restricted Shortest Path Problem,” Oper. Res. Lett., vol. 28,
no. 5, pp. 213–219, jun 2001.

[20] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and
F. Huici, “ClickOS and the Art of Network Function Virtualization,” in
Proc. USENIX NSDI, 2014, pp. 459–473.

[21] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network Function Virtualization: State-of-the-Art and
Research Challenges,” IEEE Commun. Surv. Tutorials, vol. 18, no. 1,
pp. 236–262, 2016.

[22] S. Misra, G. Xue, and D. Yang, “Polynomial Time Approximations for
Multi-Path Routing with Bandwidth and Delay Constraints,” in Proc.
IEEE INFOCOM, 2009, pp. 558–566.

[23] M. Moradi, W. Wu, L. E. Li, and Z. M. Mao, “SoftMoW: Recursive and
Reconfigurable Cellular WAN Architecture,” in Proc. ACM CoNEXT,
2014, pp. 377–390.

[24] R. Potharaju and N. Jain, “Demystifying the Dark Side of the Middle:
A Field Study of Middlebox Failures in Datacenters,” in Proc. ACM
IMC, 2013, pp. 9–22.

[25] S. Rajagopalan, D. Williams, and H. Jamjoom, “Pico Replication: A
High Availability Framework for Middleboxes,” in Proc. ACM SOCC,
2013.

[26] M. Rost and S. Schmid, “Service Chain and Virtual Net-
work Embeddings: Approximations Using Randomized Rounding,”
arXiv:1604.02180, 2016.

[27] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Maciocco,
M. Manesh, J. Martins, S. Ratnasamy, L. Rizzo, and S. Shenker,
“Rollback-Recovery for Middleboxes,” in Proc. ACM SIGCOMM, 2015,
pp. 227–240.

[28] G. Xue, W. Zhang, J. Tang, and K. Thulasiraman, “Polynomial

Time Approximation Algorithms for Multi-Constrained QoS Routing,”
IEEE/ACM Trans. Netw., vol. 16, no. 3, pp. 656–669, jun 2008.

[29] Z. Ye, X. Cao, J. Wang, H. Yu, and C. Qiao, “Joint Topology Design
and Mapping of Service Function Chains for Efficient, Scalable, and
Reliable Network Functions Virtualization,” IEEE Netw., vol. 30, no. 3,
pp. 81–87, may 2016.

[30] W. Zhang, J. Tang, C. Wang, and S. de Soysa, “Reliable Adaptive Mul-
tipath Provisioning with Bandwidth and Differential Delay Constraints,”
in Proc. IEEE INFOCOM, 2010, pp. 1–9.

[31] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani,
R. Mishra, R. Patneyt, M. Shirazipour, R. Subrahmaniam, C. Truchan,
and M. Tatipamula, “StEERING: A Software-Defined Networking for
Inline Service Chaining,” in Proc. IEEE ICNP, 2013, pp. 1–10.

Ruozhou Yu (Student Member 2013) received his
B.S. degree from Beijing University of Posts and
Telecommunications, Beijing, China, in 2013. Cur-
rently he is a Ph.D student in the School of Comput-
ing, Informatics, and Decision Systems Engineering
at Arizona State University. His research interests
include network optimization, network virtualization,
software-defined networking, network function virtu-
alization, and cloud and data center networks.

Guoliang Xue (Member 1996, Senior Member 1999,
Fellow, 2011) is a professor of Computer Science and
Engineering at Arizona State University. He received
the PhD degree in Computer Science from the Uni-
versity of Minnesota in 1991. His research interests
span the areas of QoS provisioning, network security
and privacy, crowdsourcing and network economics,
RFID systems and Internet of Things, smart city and
smart grids. He has published over 280 papers in
these areas, many of which in top conferences such
as INFOCOM, MOBICOM, NDSS and top journals

such as IEEE/ACM Transactions on Networking, IEEE JSAC, IEEE TMC.
He was a keynote speaker at IEEE LCN’2011 and ICNC’2014. He was a
TPC Co-Chair of IEEE INFOCOM’2010 and a General Co-Chair of IEEE
CNS’2014. He has served on the TPC of many conferences, including ACM
CCS, ACM MOBIHOC, IEEE ICNP, and IEEE INFOCOM. He served on the
editorial board of IEEE/ACM Transactions on Networking. He serves as the
Area Editor of IEEE Transactions on Wireless Communications, overseeing
13 editors in the Wireless Networking area. He is an IEEE Fellow, and the
VP-Conferences of the IEEE Communications Society.

Xiang Zhang (Student Member 2013) received his
B.S. degree from University of Science and Technol-
ogy of China, Hefei, China, in 2012. Currently he is a
Ph.D student in the School of Computing, Informat-
ics, and Decision Systems Engineering at Arizona
State University. His research interests include net-
work economics and game theory in crowdsourcing
and cognitive radio networks.

10

