
VeriEdge: Verifying and Enforcing
Service Level Agreements for

Pervasive Edge Computing

Xiaojian Wang1, Ruozhou Yu1, Dejun Yang2, Huayue Gu1, Zhouyu Li1

1 North Carolina State University

2 Colorado School of Mines

Outlines

2

Background and Motivation

Models and Problem Statement

Solution Design

Performance Evaluation

Conclusions

Security Analysis

Pervasive Edge Computing (PEC)

3

❑ Edge computing and PEC
❖ Low latency

❖ Network traffic reduction

❖ Edge devices can freely enter or exit the market

❖ Device heterogeneity and dynamicity

Edge computing

Pervasive Edge Computing
Tasks Services

Service Level Agreements (SLAs)

4

❑ Mutual untrust between users and edge devices

Availability: continuous service

Soundness: faithfully execution

Responsiveness: finish before ddl

Correctness: accurate results

Start, review, and end dates

Incentives and penalties

...

SLA Compliance

5

A PEC device may not faithfully process the offloading video data

while still trying to claim the service reward.

Monitoring SLA is imperative

Challenges in SLA Verification

6

❑ Limited user resources hinder independent verification

❖ Rely on external verifiers to assist.

❑ Verifiers can be untrusted as well

❖ Verifiers are driven by financial interests.

❑ Fairly opportunities for verifier participation

❖ For market stability, long-term viability, and preventing dominance
or collusion by resource-intensive devices.

Our Solution: VeriEdge

7

❑ Commit-then-sample

❖ Perform lightweight sampling and verification of intermediate
computation results with non-repudiability.

❑ Crypto-based verifier selection and computation verification

❖ Ensure verifiable fairness and a high probability for misbehavior
detection.

VeriEdge Overview

8

Outlines

9

Background and Motivation

Models and Problem Statement

Solution Design

Performance Evaluation

Conclusions

Security Analysis

System Model

10

Task offloading

Task execution

Task verification

Support communication &

Service discovery

Dispute resolution

Threat Model and Security Goals

o Malicious executor

o Colluding executor and verifier

o Malicious users

o Trust Base station and TTP

o All parties communicate via
authenticated secure channels

11

✓ SLA compliance

✓ Non-manipulable verification

✓ Dispute resolution

Problem Formulation

12

❑ Service Model

❑ User’s goal

❖ To verify that each task is faithfully executed

Correct input and intermediate state Correct output

Problem Formulation

13

❑ Goal: Define an edge outsourcing and verification framework ensures
(Probabilistic) SLA compliance.

An executor/verifier executes the

correct algorithm Φs and returns

the correct result with probability

q, and executes an arbitrary

algorithm and returns potentially

fake or malicious result with

probability 1 - q.

An honest executor/verifier

always executes a 1-algorithm.

q-Algorithm (Probabilistic) SLA compliance

Given an executor using q-algorithm with q<1, for

any pre-collusion ratio 𝛿𝑠 and sampling rate 𝜂𝑠,
unterminated outsourcing indicates that user’s

SLA requirements are met with probability

Pr[executor is faithful] > 1 − 𝜖(𝑛),
where 𝜖(𝑛) is a negligible function in the number

of epochs 𝑛, i.e., for all constants 𝑐, there exists

an integer 𝑁 such that for all 𝑛 > 𝑁, |𝜖(𝑛)| <
1

𝑛𝑐
.

Outlines

14

Background and Motivation

Models and Problem Statement

Solution Design

Performance Evaluation

Conclusions

Security Analysis

VeriEdge

15

❑ Task Execution and Verifiable Sampling 1/3

❑ VRF-based Verifier Selection 2/3

❑ Dispute Resolution 3/3

Preliminaries

16

❑ Commitment

❖ Com(x,r) → c: It takes a statement x and a random value r
as input, and outputs a commitment c.

❖ Verify(c,x,r) → {0,1}: It takes a commitment c, a statement x
and a random value r as input, and outputs 1 if c = Com(x, r),
and 0 otherwise.

✓ Binding and Hiding

Task Execution and Verifiable Sampling 1/3

17

❑ Commitment and verification

❖ Executor cannot know which tasks will be sampled before executing tasks.

❖ Executor cannot return wrong intermediate states of a sampled task to

mislead and evade verification.

Preliminaries

18

❑ Verifiable Random Function (VRF)

❖ VRFKeyGen(1k)→(SK,PK)

➢ It takes security param- eter k as input, and outputs a (SK,PK)
key pair.

❖ RFProve(SK,x)→(y,π)

➢ It takes secret key SK and an input x, and generates an output y
and its proof π.

❖ VRFVerify(PK,x,y,π)→{0,1}

➢ It takes the public key PK, input x, output y and proof π as input,
and outputs 1 if (y,π)=VRFProve(SK,x) and 0 otherwise.

✓ Uniqueness, Provability, Pseudorandomness

VRF-based Verifier Selection 2/3

19

❑ Dynamic verifier pool

❖ Verifiable verifier selection

➢ Selection process is fair and not manipulated

Dispute Resolution 3/3

20

❑ User can initiate a dispute to the TTP for arbitration

❖ When results from the executor and (some of) the verifiers do not match

▪ epoch number for the dispute

▪ verifier list signed by base station

▪ proof list containing outputs

▪ proofs from all verifiers

▪ hash values of all samples’ inputs

▪ random number

Outlines

21

Background and Motivation

Models and Problem Statement

Solution Design

Performance Evaluation

Conclusions

Security Analysis

Security Analysis

❑ Sound and correct execution

❑ Non-manipulable dispute

22

Outlines

23

Background and Motivation

Models and Problem Statement

Solution Design

Performance Evaluation

Conclusions

Security Analysis

Evaluation Settings

❑ Settings
❖ Object tracking service

➢ Real-time multi-object, segmentation and pose tracking with Yolov8

➢ KITTI dataset

❖ Platform

➢ Phone, Raspberry Pi, Laptop, Desktop

❖ Parameters

➢ 100 epochs, each with100 tasks

➢ Verifier pool 30 verifiers, pre-defined verifier number 2

➢ Sampling rate 0.01

❖ Baseline

➢ Full replay without sampling

24

Communication and Computation Overhead

25

❖ Compared to raw application
without verification

• communication cost by 0.0028%

• execution time by 1.14%

❖ Compared to Baseline

• communication cost

• execution time

User End Computation Overhead

VeriEdge is lightweight, practical, and efficient.

26

Verifier Selection <150ms

Commitment checking time <80ms

Outlines

27

Background and Motivation

Models and Problem Statement

Solution Design

Performance Evaluation

Conclusions

Security Analysis

Conclusions

❑ VeriEdge
❖ A framework for SLA verification and enforcement in dynamic PEC

environments with untrusted edge devices

❑ Commit-then-sample
❖ Perform lightweight sampling and verification of intermediate computation

results with non-repudiability.

❑ VRF based verifier selection and computation verification
❖ Ensures verifiable fairness and a high probability for misbehavior detection

❑ Stateful object tracking application evaluation
❖ Efficiency and scalability

28

Thank you very much!
Q&A?

29

This research was supported in part by NSF grants

2045539, 2007391, 2008056 and 2008935.

The information reported here does not reflect the

position or the policy of the federal government.

	Slide 1: VeriEdge: Verifying and Enforcing Service Level Agreements for Pervasive Edge Computing
	Slide 2: Outlines
	Slide 3: Pervasive Edge Computing (PEC)
	Slide 4: Service Level Agreements (SLAs)
	Slide 5: SLA Compliance
	Slide 6: Challenges in SLA Verification
	Slide 7: Our Solution: VeriEdge
	Slide 8: VeriEdge Overview
	Slide 9: Outlines
	Slide 10: System Model
	Slide 11: Threat Model and Security Goals
	Slide 12: Problem Formulation
	Slide 13: Problem Formulation
	Slide 14: Outlines
	Slide 15: VeriEdge
	Slide 16: Preliminaries
	Slide 17: Task Execution and Verifiable Sampling 1/3
	Slide 18: Preliminaries
	Slide 19: VRF-based Verifier Selection 2/3
	Slide 20: Dispute Resolution 3/3
	Slide 21: Outlines
	Slide 22: Security Analysis
	Slide 23: Outlines
	Slide 24: Evaluation Settings
	Slide 25: Communication and Computation Overhead
	Slide 26: User End Computation Overhead
	Slide 27: Outlines
	Slide 28: Conclusions
	Slide 29: Thank you very much!

