
VeriEdge: Verifying and Enforcing 
Service Level Agreements for 

Pervasive Edge Computing

Xiaojian Wang1, Ruozhou Yu1, Dejun Yang2, Huayue Gu1, Zhouyu Li1

1 North Carolina State University

2 Colorado School of Mines



Outlines

2

Background and Motivation

Models and Problem Statement

Solution Design

Performance Evaluation

Conclusions

Security Analysis



Pervasive Edge Computing (PEC)
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❑ Edge computing and PEC
❖ Low latency

❖ Network traffic reduction 

❖ Edge devices can freely enter or exit the market 

❖ Device heterogeneity and dynamicity 

Edge computing

Pervasive Edge Computing
Tasks Services



Service Level Agreements (SLAs)
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❑ Mutual untrust between users and edge devices

Availability: continuous service

Soundness: faithfully execution

Responsiveness: finish before ddl

Correctness: accurate results

Start, review, and end dates

Incentives and penalties

...



SLA Compliance
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A PEC device may not faithfully process the offloading video data 

while still trying to claim the service reward.

Monitoring SLA is imperative



Challenges in SLA Verification
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❑ Limited user resources hinder independent verification

❖ Rely on external verifiers to assist.

❑ Verifiers can be untrusted as well

❖ Verifiers are driven by financial interests.

❑ Fairly opportunities for verifier participation

❖ For market stability, long-term viability, and preventing dominance 
or collusion by resource-intensive devices.



Our Solution: VeriEdge
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❑ Commit-then-sample

❖ Perform lightweight sampling and verification of intermediate 
computation results with non-repudiability.

❑ Crypto-based verifier selection and computation verification

❖ Ensure verifiable fairness and a high probability for misbehavior 
detection.



VeriEdge Overview
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System Model
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Task offloading

Task execution

Task verification

Support communication &

Service discovery

Dispute resolution



Threat Model and Security Goals

o Malicious executor

o Colluding executor and verifier

o Malicious users 

o Trust Base station and TTP 

o All parties communicate via 
authenticated secure channels
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✓ SLA compliance

✓ Non-manipulable verification 

✓ Dispute resolution 



Problem Formulation 
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❑ Service Model

❑ User’s goal 

❖ To verify that each task is faithfully executed

Correct input and intermediate state Correct output



Problem Formulation 
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❑ Goal: Define an edge outsourcing and verification framework ensures
(Probabilistic) SLA compliance.

An executor/verifier executes the 

correct algorithm Φs and returns 

the correct result with probability 

q, and executes an arbitrary 

algorithm and returns potentially 

fake or malicious result with 

probability 1 - q. 

An honest executor/verifier 

always executes a 1-algorithm.

q-Algorithm (Probabilistic) SLA compliance

Given an executor using q-algorithm with q<1, for 

any pre-collusion ratio 𝛿𝑠 and sampling rate 𝜂𝑠, 
unterminated outsourcing indicates that user’s 

SLA requirements are met with probability

Pr[ executor is faithful ] > 1 − 𝜖(𝑛),
where 𝜖(𝑛) is a negligible function in the number 

of epochs 𝑛, i.e., for all constants 𝑐, there exists 

an integer 𝑁 such that for all 𝑛 > 𝑁, |𝜖(𝑛)| <
1

𝑛𝑐
.
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VeriEdge
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❑ Task Execution and Verifiable Sampling 1/3 

❑ VRF-based Verifier Selection 2/3

❑ Dispute Resolution 3/3



Preliminaries
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❑ Commitment

❖ Com(x,r) → c: It takes a statement x and a random value r 
as input, and outputs a commitment c. 

❖ Verify(c,x,r) → {0,1}: It takes a commitment c, a statement x 
and a random value r as input, and outputs 1 if c = Com(x, r), 
and 0 otherwise. 

✓ Binding and Hiding



Task Execution and Verifiable Sampling 1/3 
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❑ Commitment and verification

❖ Executor cannot know which tasks will be sampled before executing tasks.

❖ Executor cannot return wrong intermediate states of a sampled task to 

mislead and evade verification.



Preliminaries
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❑ Verifiable Random Function (VRF)

❖ VRFKeyGen(1k)→(SK,PK) 

➢ It takes security param- eter k as input, and outputs a (SK,PK) 
key pair. 

❖ RFProve(SK,x)→(y,π) 

➢ It takes secret key SK and an input x, and generates an output y 
and its proof π. 

❖ VRFVerify(PK,x,y,π)→{0,1} 

➢ It takes the public key PK, input x, output y and proof π as input, 
and outputs 1 if (y,π)=VRFProve(SK,x) and 0 otherwise. 

✓ Uniqueness, Provability, Pseudorandomness 



VRF-based Verifier Selection 2/3 
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❑ Dynamic verifier pool

❖ Verifiable verifier selection

➢ Selection process is fair and not manipulated



Dispute Resolution 3/3 
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❑ User can initiate a dispute to the TTP for arbitration

❖ When results from the executor and (some of) the verifiers do not match

▪ epoch number for the dispute

▪ verifier list signed by base station

▪ proof list containing outputs 

▪ proofs from all verifiers

▪ hash values of all samples’ inputs

▪ random number
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Security Analysis

❑ Sound and correct execution

❑ Non-manipulable dispute
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Evaluation Settings

❑ Settings
❖ Object tracking service

➢ Real-time multi-object, segmentation and pose tracking with Yolov8 

➢ KITTI dataset

❖ Platform

➢ Phone, Raspberry Pi, Laptop, Desktop

❖ Parameters

➢ 100 epochs, each with100 tasks

➢ Verifier pool 30 verifiers, pre-defined verifier number 2

➢ Sampling rate 0.01

❖ Baseline

➢ Full replay without sampling
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Communication and Computation Overhead

25

❖ Compared to raw application 
without verification

•       communication cost by 0.0028%

•       execution time by 1.14%

❖ Compared to Baseline

•       communication cost

•       execution time



User End Computation Overhead

VeriEdge is lightweight, practical, and efficient. 
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Verifier Selection <150ms

Commitment checking time <80ms
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Conclusions

❑ VeriEdge
❖ A framework for SLA verification and enforcement in dynamic PEC 

environments with untrusted edge devices 

❑ Commit-then-sample
❖ Perform lightweight sampling and verification of intermediate computation 

results with non-repudiability. 

❑ VRF based verifier selection and computation verification
❖ Ensures verifiable fairness and a high probability for misbehavior detection 

❑ Stateful object tracking application evaluation
❖ Efficiency and scalability 
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Thank you very much!
Q&A?
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