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loT:The Future Internet

) loT is the future Internet that connects every aspect of our
work and life.
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Example loT Applications
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Monolithic Applications
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Microservices
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Microservices vs. Edge Computing

B High delay
High bw overhead Responsive

Single. point of failure Low bw overhead
_ Security concerns Distributed
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The Microservice Load Balancing Problem

] Edge-based microservices can be easily saturated.
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The Microservice Load Balancing Problem

] Edge-based microservices can be easily saturated.
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The Microservice Load Balancing Problem

] Edge-based microservices can be easily saturated.

] Challenge: interdependent microservices.

Object
Detection

1
Image H Temporal

Processing Analysis
1 E 1
Object |}r

Detection | /r Tra_ffi.c
2 Prediction
% Image /4 ® | _JTemporal e
Processing / e Analysis
2 Object |® 2
® T Detection
3

& ARIZONA STATE 10
UNIVERSITY



Our Approach: Overview

-
)
2)
3)

)

Problem Modeling
DAG-based interdependency graph (App-Graph).
Compactly modeled infrastructure (Inf-Graph).
Flexible application instantiation (Real-Graph).

4) Joint instantiation finding & load allocation.

Application QoS requirements.

~

Algorithmic Results
Optimal algorithm for QoS-agnostic problem.

NP-hardness for QoS-aware problem.
FPTAS for QoS-aware problem.

\

Next Steps (Future Work)
Network-aware load balancing.
Reliability and security.
Economics-aware microservice composition.
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Application with Interdependent Microservices

J General DAG-based application graph (App-Graph).

¢ Captures complex interdependencies, unlike existing line graph-based models.

Q Data Input EO Microservice — API Call

Security Cameras

Detect. Storage

Motion \/
Detect.
(

Smart

Motion Sensors Home ) Cmd.
Center
Data
Proc. \

Interdependency edge
Ambient Sensors \  Data distribution ratio: output / input.
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loT Infrastructure in the Application’s View

J Inf-Graph: deployed microservice instances & their interactions.

App-Graph
0.5

=0 @ Inf-Graph

External Demand

Microservice Instance
Capacity: input data volume.
Processing delay.

Inter-Instance Communication Channel
* Transmission delay (=0 in example).
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Application Instantiation

J Real-Graph: instantiating the App-Graph in the Inf-Graph.

Selected Instance
Impact ratio: how much data this instance
gets if 1 unit is allocated to the source.
Max cumulative delay from source.
Both can be computed based on this graph.

w Real-Graph
(1, 13)

Source Demand Allocation ‘\

Source of Demand
A real-graph has a single source of demand.
(There could be multiple sources in Inf-Graph.)
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Problem Statement: Overview

U Inputs:
¢ App-Graph: microservices, interdependencies, data distribution ratios

/

¢ Inf-Graph: instances, communication channels, capacities, and delays

 Outputs:
¢ A set of Real-Graphs.

/

¢ External demand allocation for each Real-Graph.

1 Constraints:
% Load balancing: total load <= instance capacity * ¥.
¢ QoS awareness: maximum delay <= D.

] Objective (optimization version):

00

% Minimize maximum delay of all Real-Graphs.
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BLB: Basic (QoS-agnostic) Load Balancing

J Without delay constraint, the problem can be formulated as LP.

ﬁnd f : L — R* _———— | Variables: Per-link demand allocation function.

st. 0, =060+ Y  f(l), YneEN;

ZGLin (TL) ¥

Demand per node = external + flow-in.

o < WV-¢,, VnéeN;
T (v, )00 = Z fll), Vn,w € Vou(vy).

ZELout (TL,’UJ) W

Capacity (load balancing) per node.

/

Flow conservation: sum flow towards all
instances of a downstream microservice w
= input data * data distribution ratio of w.
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BLB: Basic (QoS-agnostic) Load Balancing

J Without delay constraint, the problem can be formulated as LP.

find f:L+—R* —

Variables: Per-link demand allocation function.

st. 0, =060+ Y  f(l), YneEN;

leL;, (n)

/
r(vn,w)én — Z

N

Demand per node = external + flow-in.

O0p, < W-¢,, VnéeN;

f(l)7 \V/naw - Vout(vn)-

ZGLout (n,w) \

Theorem I:

BLB is optimally solvable in polynomial time.
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Real-Graph Decomposition Theorem

Theorem 2:

Every demand allocation function f so defined can be decomposed into
at most |N| + |L| real-graphs with positive source demands.

J Why do we need such a theorem?
|.  Transform any solution of BLB into a set of implementable real-graphs.

2. Define QoS of a load balancing plan (max delay of all real-graphs).
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QLB: QoS-aware Load Balancing

Theorem 3:
QLB (optimization version) is NP-hard.

U Fully Polynomial-Time Approximation Scheme (FPTAS)
can achieve the best trade-off between time and accuracy
%+ Approximation ratio: (1+€) — For maximization problem
%+ Time complexity: O(poly(1/¢) % poly(input))

/

*¢ In practice, one can arbitrarily tune € to get best accuracy within time limit.

Theorems 4&5:
QLB (optimization version) admits an FPTAS.
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A Brief Overview of Our FPTAS

] ldea:

¢ Pseudo-polynomial time algorithm:

» Expand Inf-Graph into a delay-layered graph.
» Run BLB LP on the expanded graph.

¢ Discretization via approximate testing:
» Find delay lower & upper bounds (UB, LB) s.t. UB <= poly(input) * LB.
Discretize delay values based on (UB, LB).
Run pseudo-polynomial time algorithm.
Refine (UB, LB) based on output.

O(&|LPIN[*Llog  + |L[*Llog |N|)

YV V VY

/

*¢ Efficiency enhancement:
» Approximate testing to shrink initial bound s.t. UB <= constant * LB.

O(L|LI*|N|*Llog &1 + |L|*| N|*L1log log | N|)
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Simulation Settings

) Simulated network scenarios:

\/

*» App-Graph:
» 5-layered applications, layer-1 being the source layer
» 10-70 microservices: 10% in layer-1, uniformly distributed in other layers
» 4 in-going edges per microservice in layers 2-5
» Data distribution ratio: uniformly generated
% Inf-Graph:
» | instance per microservice in source layer, 5-15 in others
» Linking probability (between interdependent instances): 0.3
» Source demands: 100-900 units
» Node capacities: 10-90 units
» Node/Link delays: 0-500/1000 ms
% Load balancing goal: optimal load under BLB, or 2 x optimal load under BLB

\/

¢ Approximation parameter: €=0.5

J

Q)

omparisons:

» QLB

> BLB

» QHU: QoS-aware heuristic, solving BLB minimizing demand-weighted delay

4
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Comparison Results
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Other Perspectives and Beyond

] So far, we've talked about

/

+* Basic model: DAG-based apps, Real-Graphs

/

*¢ Processing capacities and delays - Computing Perspective

/

** Network delays

J What we didn’t consider in this work

** Network topology )

¢ Network capacities & congestion - Networking Perspective
¢ Routing |

¢ Reliability: microservice instance failures } Security Perspective

e

*

Incentives, pricing

e

*

Economics Perspective
Payment methods } g

J A unified approach is still in need for high-performance loT.
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Our Conclusions

J Load Balancing for Interdependent loT Microservices
s DAG model for applications: App-Graph and Inf-Graph
¢ Application realization with Real-Graph abstraction

¢ System-wide load balancing with QoS (delay) constraints

J Algorithmic solutions

¢ Optimal solution for QoS-agnostic problem
¢ FPTAS for (NP-hard) QoS-aware problem

) Future directions

/

¢ Unified framework for loT performance optimization
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Thank you very much!
Q&A?
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NP-Hardness Proof
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