
Application Provisioning in Fog Computing-enabled
Internet-of-Things: A Network Perspective

Ruozhou Yu, Guoliang Xue, Xiang Zhang

Abstract—The emergence of the Internet-of-Things (IoT) has
inspired numerous new applications. However, due to the limited
resources in current IoT infrastructures and the stringent quality-
of-service requirements of the applications, providing computing
and communication supports for the applications is becoming
increasingly difficult. In this paper, we consider IoT applications
that receive continuous data streams from multiple sources in the
network, and study joint application placement and data routing
to support all data streams with both bandwidth and delay
guarantees. We formulate the application provisioning problem
both for a single application and for multiple applications, with
both cases proved to be NP-hard. For the case with a single
application, we propose a fully polynomial-time approximation
scheme. For the multi-application scenario, if the applications can
be parallelized among multiple distributed instances, we propose
a fully polynomial-time approximation scheme; for general non-
parallelizable applications, we propose a randomized algorithm
and analyze its performance. Simulations show that the proposed
algorithms greatly improve the quality-of-service of the IoT
applications compared to the heuristics.

Keywords—Internet-of-things, quality-of-service, service provi-
sioning, fog computing, approximation algorithms

I. INTRODUCTION

Designed to connect the digital world and the real world,
the Internet-of-Things (IoT) has been recognized as one of the
enabling technologies of the next era of computing. Numerous
applications have been developed utilizing IoT functionalities,
enabling advances in a number of areas including smart cities,
smart health, connected cars, etc. It has been anticipated that
the global IoT market will exceed $250B by 2020 [7].

One common type of IoT application is real-time pro-
cessing applications, which process continuous data streams
generated by IoT devices for pre-processing or analysis. These
applications commonly have more stringent quality-of-service
(QoS) requirements than traditional applications, including
delay, throughput, etc., in order to ensure in-time delivery and
analysis of real-time data and hence fast response to the users.
An example is real-time sports analysis applications [13], [21],
which analyze the status of live sport games, based on real-
time data from cameras and/or other sensors.

Unfortunately, current IoT infrastructures are not built
specifically for real-time processing applications. Current in-
frastructures use cloud computing as the underlying com-
puting support. While cloud computing offers abundant and
inexpensive computing power, it suffers from long end-to-
end delay and high bandwidth usage, which greatly affect

Yu, Xue and Zhang ({ruozhouy, xue, xzhan229}@asu.edu) are all with
Arizona State University, Tempe, AZ 85287. This research was supported in
part by NSF grants 1461886 and 1704092. The information reported here does
not reflect the position or the policy of the funding agency.

the performance of real-time processing applications. This
situation is further aggravated by commonly used communi-
cation technologies in IoT, such as cellular networks and/or
low-power wide-area networks (LPWANs), which offer only
limited bandwidth for transmission.

Fog computing is one of the emerging technologies aiming
to address these issues in current IoT. With fog nodes deployed
near the IoT devices and end users, fog computing can
reduce both the propagational delay and the bandwidth usage.
However, ubiquitous fog node deployment is still unrealistic
within the near future due to cost issues. Combined with the
limited capacity of the IoT networks, this raises the problem of
resource allocation in fog-enabled IoT. In particular, an infras-
tructure needs to allocate computing and network resources to
support each application with proper QoS guarantees.

In this paper, we study this problem from a network
perspective. Given a real-time processing IoT application, the
infrastructure needs to decide both the fog node to host this
application, and the channels along which the application’s
data streams will be transmitted. Furthermore, the channels
must satisfy both the bandwidth demands of the applica-
tion, and its delay requirement. We consider two problems:
the Single-Application Provisioning (SAP) problem, and the
Multi-Application Provisioning (MAP) problem, both proved
to be NP-hard. For SAP, we propose a fully polynomial-time
approximation scheme (FPTAS). For MAP, if the processing
logic of each application can be parallelized among multiple
distributed instances, we further propose another FPTAS; if the
applications’ processing cannot be parallelized, we propose a
randomized algorithm with provable performance. To validate
our algorithms, we have conducted extensive simulations, com-
paring our proposed algorithms to several heuristic solutions.
It has been shown that our algorithms largely outperform the
heuristics in terms of both bandwidth and delay.

Our contributions are summarized as follows:

• To the best of our knowledge, we are the first to study
the problem of IoT application provisioning with both
bandwidth and delay requirements.

• For the SAP problem, we propose an FPTAS.
• For the MAP problem, we propose an FPTAS when ap-

plications are parallelizable, and a randomized algorithm
when each application can only be assigned to one host.

• We use extensive simulations to evaluate the performance
of our algorithms against several heuristic approaches.

The rest of this paper is organized as follows. In Sec. II,
we introduce related work. In Sec. III, we present our system
model. In Secs. IV and V, we propose our results for SAP
and MAP respectively. In Sec. VI, we present our performance
evaluation results. In Sec. VII, we conclude this paper.

1

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

978-1-5386-4128-6/18/$31.00 ©2018 IEEE 783

II. BACKGROUND AND RELATED WORK

A. Internet-of-Things and Fog Computing

While the concept of the “Internet-of-Things” can trace
back to the last century1, its power has barely been unleashed
until recently, when several enabling technologies, including
wireless networks, cloud computing and data science, have
witnessed drastic advances. Since then, extensive efforts have
been put into IoT-related areas, including computing architec-
tures [2], communications [21], radio-frequency identification
(RFID) [4], etc. A survey on IoT can be found in [17].

Fog computing has been regarded as one of the key tech-
nologies that enable IoT [2]. Extending from cloud computing,
fog computing deploys geographically distributed fog nodes in
the edge network, providing computing power closer to both
the IoT devices and end users. Fog computing can improve the
performance and energy efficiency in many IoT applications,
including crowdsensing [1], smart cities [12], etc.

The limited resources in IoT and fog have urged efforts on
new resource allocation methods. Zeng et al. [27] studied task
scheduling and data placement to minimize I/O time, comput-
ing time and transmission delay in fog platforms. Many have
studied workload offloading in edge/fog-cloud systems with
different objectives, including power consumption [8], [25],
delay minimization [8], [20], [22], quality-of-experience [25],
etc. However, most of these do not consider the complex
structure and limited capacity of the edge network; while
Deng et al. [8] indeed considered network bandwidth con-
straints, they assumed that the transmission of each applica-
tion’s data will not interfere with each other, which does not
capture the sharing nature of the IoT networks, and hence
does not apply in many cases. Due to lack of existing work
on network resource allocation in fog-enabled IoT, we study
application provisioning from a network perspective, where
we aim to guarantee the QoS of applications in terms of both
transmission delay and bandwidth.

B. Network Service Provisioning

Stepping out of the IoT and fog computing domain, some
related resource allocation problems have also been studied
in different contexts, such as virtual network/infrastructure
embedding (VNE/VIE) [5] and service function chaining
(SFC) [16], [19]. The VNE/VIE problems aim to find an
embedding of a virtual service topology onto the physical
topology, which respects resource capacities in the substrate.
The difference is that VIE allows virtual node consolidation
while VNE does not. While these two problems can be viewed
as a generalization of ours, they are harder to solve. To the
best of our knowledge, there has yet been any non-trivial
approximation ratio for VNE/VIE on general graphs. Assump-
tions on topologies and/or service models help in providing
performance bounds [28], but are commonly too restrictive to
handle the complex structures of the IoT networks.

SFC is another special case of the general VNE/VIE prob-
lems, where the virtual topology is restricted to line graphs.
In this case, certain approximation bounds can be obtained, as
shown by Rost et al. [19] and Kuo et al. [16]. In this paper,
we consider a different service model than SFC, where the

1The term dates back to a talk by Kevin Ashton in 1999 [17].

virtual topologies are star graphs. We also propose solutions
with non-trivial performance guarantees.

III. SYSTEM MODEL

A. Infrastructure Model

The IoT infrastructure is modeled as a directed graph
G = (V, E), where V is the note set, and E is the link set;
let m = |E|. The node set consists of both facility nodes
(general-purpose servers, fog-enabled switches/routers, etc.)
and network nodes (switches/routers). We use F ✓ V to denote
the set of facility nodes, and N ✓ V to denote the set of
network nodes. Note that these two sets are not necessarily
disjoint, as some network nodes may also have computing
capabilities [6]. Each link e 2 E has a capacity, denoted by
ce > 0, and a transmission delay, denoted by de > 0.

B. Application Model

An application receives continuous data from one or more
data sources, and performs joint analysis of all received data.
We assume each source generates data in a constant rate, e.g., a
video camera generating video footages. Given the application,
the infrastructure needs to both find a facility node to host it,
and establish transmission channels from each source to the
host. Each application may require certain hardware resources,
e.g., video processing commonly requires strong GPU for
efficient computation. Hence in many cases, only a subset
of the facility nodes can host an application. The established
channels need to satisfy at least two QoS requirements: 1) each
source should receive bandwidth that meets its data generation
rate, and 2) the transmission delay of each channel should be
within the delay tolerance of the application.

Formally, an IoT application is denoted by a triple, � =
(S, B,D), where S ✓ V denotes the set of data sources of
�, B : S 7! R+ denotes the corresponding data generation
rate of each data source in S (R+ is the positive real number
set), and D > 0 is the delay bound that must be enforced for
transmission from each data source. Given an application �,
we further use F� ✓ F to denote its candidate host set, where
each v 2 F� satisfies the hardware requirement of �.

C. Provisioning Model

As aforementioned, application provisioning involves both
finding the host node and data routing. We make the following
definitions to help our problem statement.

Definition 3.1 (Feasible path set): Given network G and
an application �, let v 2 F� be a candidate host of � and s 2 S
be a data source of �, the feasible path set of � regarding v and
s, denoted by P�

v,s
, is defined as the subset of all (s, v)-paths

in G such that for each path p 2 P�
v,s

,
X

e2p
de D. (1)

We use P�
v
=

S
s2S P�

v,s
to denote the feasible path set from

all data sources of � to candidate host v, and P� =
S

v2F�
P�
v

the feasible path set towards all candidate hosts of �. 2

Definition 3.2 (Bandwidth allocation): Let P be an arbi-
trary set of paths in G. A bandwidth allocation of P is defined
as a mapping L : P 7! R⇤ (R⇤ denotes the nonnegative real

2

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

784

number set), where L(p) denotes the bandwidth allocated on
path p for any p 2 P . We say that a bandwidth allocation L
is feasible, iff for any link e 2 E ,X

p2P :e2p
L(p) ce. (2)

We use b(P) =
P

p2P
L(p) to denote the aggregate bandwidth

of L over path set P . 2

With the above definitions, we are ready to define the
expected outcome of an application provisioning decision.

Definition 3.3 (Provisioning scheme): Given network G

and an application �, a provisioning scheme is defined as a
triple ⇧ = (h, P�

h
,L�

h
), where h 2 F� is a candidate host

of �, P
�
h
✓ P�

h
is a subset of feasible paths of � towards

host h, and L�
h

is a feasible bandwidth allocation of P
�
h

. We
say that a provisioning scheme ⇧ is feasible, iff for every data
source s 2 S , the aggregate bandwidth b(P�

h,s
) � B(s), where

P
�
h,s

= P
�
h
[P�

h,s
is the subset of selected paths for s. 2

For simplicity, we assume the processing results are con-
sumed locally at the application host. However, it is trivial to
add channels that transmit the results to other nodes into our
model and solutions, and hence is omitted due to page limit.

IV. SINGLE-APPLICATION PROVISIONING

A. Problem Statement and Computational Complexity

We first define the single-application problem:

Definition 4.1 (SAP): Given network G and application
�, the Single-Application Provisioning (SAP) problem is to
find a feasible provisioning scheme ⇧ for �. Its optimization
version, named O-SAP, is to find a provisioning scheme ⇧
for �, such that for every data source s 2 S , its aggregate
bandwidth satisfies b(P�

h,s
) � � ·B(s), and the traffic scaling

ratio � is maximized. 2

Equivalently, the optimization version can also be inter-
preted as finding the minimum congestion ratio, defined as the
minimum ratio between the flow and the capacity of any link,
such that the demands of all data streams are fully satisfied.
Clearly, if a SAP instance is feasible, the corresponding O-SAP
instance has an optimal value �⇤ � 1, and vice versa.

Theorem 4.1: Both SAP and O-SAP are NP-hard. 2

Proof: Consider a special case of SAP where the appli-
cation has only one data source s and one candidate host
t. In this case, SAP becomes finding a set of (s, t)-paths
and a bandwidth allocation that satisfy the bandwidth demand
B(s) and the delay bound D. This turns out to be the Multi-
Path routing with Bandwidth and Delay constraints (MPBD)
problem, which is NP-hard [18]. Hence SAP is NP-hard, and
the NP-hardness of O-SAP follows.

B. An FPTAS to O-SAP

Based on Theorem 4.1, an FPTAS to O-SAP is the best
result one can expect unless P=NP. Our algorithm is based
on the decomposition of O-SAP into two subproblems: Host
Designation (HD) that decides the host node of application
�, and Data Routing (DR) that decides the routing paths and
bandwidth from each data source to the host. The relationship
between DR and O-SAP is stated in the following lemma.

Algorithm 1: Approximation Algorithm AO-SAP

Input: Network G, application �
Output: Traffic scaling ratio �, provisioning scheme ⇧

1 � 0;
2 for each candidate host h 2 F� do
3 (�h, P�

h
,L�

h
) ADR(G,�, h);

4 if �h > � then
5 � �h, ⇧ (h, P�

h
,L�

h
);

6 return (�,⇧).

Lemma 4.1: If the DR subproblem admits a polynomial-
time a-approximation algorithm, so does O-SAP. 2

Proof: We construct an a-approximation algorithm to O-
SAP (AO-SAP) out of an a-approximation algorithm to DR
(ADR), as shown in Algorithm 1. The algorithm iterates over
all candidate hosts to find the best solution for the application,
using the a-approximation ADR. To prove Algorithm 1 is an a-
approximation to O-SAP, let ⇧⇤ = (h⇤

, P
⇤
,L⇤) be an optimal

solution to O-SAP with objective value �⇤. Then (P ⇤
,L⇤) is

indeed a feasible solution of DR given host node h
⇤. Let �⇤

h⇤

be the optimal DR solution with h
⇤, we have �⇤ �

⇤
h⇤ . The

DR solution picked in Algorithm 1 during iteration h
⇤, denoted

by (P�
h⇤ ,L�

h⇤), has scaling ratio �h⇤ � a�
⇤
h⇤ � a�

⇤. This leads
to � � �h⇤ � a�

⇤. The lemma follows.

It remains to solve the DR subproblem, which is still NP-
hard due to the same argument as in the proof of Theorem 4.1.
Yet, the DR subproblem turns out to be a special case of
the Maximum Concurrent Flow (MCF) problem with delay
bounds, which admits an FPTAS due to [3]. Details are omitted
due to page limit. This, combined with Lemma 4.1, leads to
our final theorem for O-SAP.

Theorem 4.2: O-SAP admits an FPTAS, as shown in
Algorithm 1 combined with the FPTAS in [3]. 2

V. MULTI-APPLICATION PROVISIONING

In this section, we study a more general problem where
multiple applications seek to share the IoT infrastructure.

A. Problem Statement and Computational Complexity

The multi-application problem is defined as follows:

Definition 5.1 (MAP): Given network G and an applica-
tion set � = {�1, . . . ,�K}, the Multi-Application Provision-
ing (MAP) problem is to find a set of feasible provisioning
schemes ⇧ = {⇧1, . . . ,⇧K}, where ⇧k = (hk, Pk,Lk) is the
provisioning scheme for �k for k = 1, . . . ,K, such that the
shared capacity constraint is satisfied for any link e 2 E :

XK

k=1

X
p2Pk

Lk(p) ce.

Its optimization version, named O-MAP, is to find a set of
provisioning schemes ⇧ for �, such that the minimum traffic
scaling ratio � of all applications, as defined in Definition 4.1,
is maximized. We use Pk,s = Pk \P�k

hk,s
to denote the subset

of selected paths for data source s of application �k. 2

Clearly MAP and O-MAP are both NP-hard, as they gen-
eralize SAP and O-SAP, respectively. We extend the concept
of HD and DR to MAP, where HD (Host Designation) is to
fix a host node for each application, and DR (Data Routing)
is to fix routing paths and bandwidth for each data stream.

3

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

785

B. Problem Formulation

Though the hardness of O-MAP follows from that of O-
SAP, in general the former is harder, as there are O(|F|K)
possible HD solutions in the worst case, instead of the linear
number in O-SAP. This prevents us from iterating over all
possible HD combinations as in the last section. Below, we
first give an exact formulation of O-MAP. For simplicity, we
use k to denote �k if no ambiguity is introduced. We use
P =

S
K

k=1 Pk to denote the set of all feasible paths of
all applications2. Define x(k, v) 2 {0, 1} as the indicator of
whether an application k is hosted on node v 2 Fk, L(p) � 0
as the bandwidth allocation on p 2 P , and � � 0 as the traffic
scaling ratio. Then O-MAP is formulated as follows:

max � (3a)

s.t.
X

p2Pk
v,s

L(p) � B(s) · � · x(k, v), 8k, v, s; (3b)

X

v2Fk

x(k, v) = 1, 8k; (3c)

X

p2P:e2p

L(p) ce, 8e 2 E ; (3d)

x(k, v) 2 {0, 1},L(p),� � 0, 8k, v, p. (3e)
Explanation: Constraint (3b) couples bandwidth allocation
with the demands, the host designation, and the scaling ratio.
Constraint (3c) ensures that each application is hosted on
exactly one node. Constraint (3d) enforces link capacities.

Due to binary variables x(k, v) and Constraint (3b), Pro-
gram (3) is a Mixed Integer Quadratic Program (MIQP), which
is generally hard to solve. Therefore, below we first look at a
related problem where we relax some of the constraints.

C. Parallelizable Applications

We say an application is parallelizable, if its processing
logic can be split over multiple instances, each processing a
certain portion of data from every data source. This application
model may be of interest in many contexts, e.g., for stateless
data fusion of multiple sensors [9] for which each instance can
process an arbitrary portion of the incoming data as long as
the same portion is received synchronously from every data
source. The problem of provisioning multiple parallelizable
applications relaxes the constraint in O-MAP that each appli-
cation is hosted on exactly one host. We call this problem the
Parallelizable O-MAP problem, or PO-MAP for short.

Define variable y(k, v) = �x̃(k, v) where x̃(k, v) 2 [0, 1]
relaxes x(k, v) in Program (4). PO-MAP is formulated below.

max � (4a)

s.t.
X

p2Pk
v,s

L(p) � B(s) · y(k, v), 8k, v, s; (4b)

X

v2Fk

y(k, v) � �, 8k; (4c)

X

p2P:e2p

L(p) ce, 8e 2 E ; (4d)

y(k, v),L(p),� � 0, 8k, v, p. (4e)

2W.l.o.g., if two applications have an overlapping feasible routing path, we
still regard the same path for two different applications as two different paths.

Program (4) is a linear program (LP) (also called the
linear relaxation of Program (3)). However, it still may have
an exponential size due to the possibly exponential number
of feasible paths in a graph. Therefore, we next propose an
FPTAS to the PO-MAP problem.

D. An FPTAS to PO-MAP

Our FPTAS to PO-MAP extends the ones to MCF reported
in [3], [10], [11]. However, PO-MAP is more difficult than the
above, due to the need for (fractional) host designation. We first
write the dual of Program (4), where we define z(k, v, s) � 0
as the dual variable of Constraint (4b) for 8k, v 2 Fk, s 2 Sk,
'(k) � 0 as the dual variable of Constraint (4c) for 8k, and
l(e) as the dual variable of Constraint (4d) for 8e 2 E :

max �(l) =
X

e2E
cel(e) (5a)

s.t.
X

e2p

l(e) � z(k, v, s), 8k, v, s, p 2 Pk

v,s
; (5b)

X

s2Sk

B(s)z(k, v, s) � '(k), 8k, v; (5c)

KX

k=1

'(k) � 1; (5d)

z(k, v, s),'(k), l(e) � 0, 8k, v, s, e. (5e)

Since the primal and dual are intrinsically different from
the above references, we provide our full analysis for com-
pleteness of this paper, starting from the observations below:

Lemma 5.1: Constraint (5b) is binding, i.e., equality holds
instead of inequality at optimality, for at least one combination
of k, v, s, p, where k = 1 . . .K, v 2 Fk, s 2 Sk, p 2 Pk

v,s
. 2

Lemma 5.2: Constraint (5d) is binding. 2

Lemma 5.3: For 8k, Constraint (5c) is binding for at least
one candidate host v 2 Fk. 2

Lemma 5.4: For 8k, 8v 2 Fk, 8s 2 Sk, Constraint (5b)
is binding for at least one feasible routing path p 2 Pk

v,s
. 2

Proof: Let " be an arbitrarily small positive amount. If
Lemma 5.1 is false, Constraint (5b) is not binding for every
combination of k, v, s, p. Then we can reduce the value of
l(e) for an arbitrary e where l(e) > 0 by ", and obtain a
feasible dual solution with a strictly smaller objective value,
contradicting our optimality assumption. If Lemma 5.2 is false,
then we can reduce the value of '(k) for every k by ". This will
make every Constraint (5c) unbinding. Then we can reduce
the value of z(k, v, s) for every combination of k, v, s, which
makes every Constraint (5b) to be unbinding, contradicting
Lemma 5.1. If Lemma 5.3 is false for some k, then we can
increase the value of '(k) by ", which makes Constraint (5d)
unbinding, contradicting Lemma 5.2. If Lemma 5.4 is false for
some combination of k, v, s, then we can increase the value
of z(k, v, s) by ", which makes Constraint (5c) unbinding for
the corresponding k, contradicting Lemma 5.3. Therefore, we
conclude that Lemmas 5.1–5.4 are all true.

Based on Lemmas 5.1–5.4, we have the following facts.

1) At optimality, z(k, v, s) = minp2Pk
v,s

{
P

e2p
l(e)}, i.e.,

z(k, v, s) equals the shortest feasible routing path length
in Pk

v,s
regarding length function l : E 7! R⇤;

4

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

786

2) At optimality, '(k) = minv2Fk{
P

s2Sk
B(s)z(k, v, s)},

i.e., '(k) equals the minimum (over all possible candidate
hosts v 2 Fk) weighted (by B(s)) sum (over all sources
s 2 Sk) of shortest feasible routing path lengths in Pk

regarding length function l.

Let ⇣k,v,s(l) = minp2Pk
v,s

{
P

e2p
l(e)} be the shortest

feasible path length in Pk
v,s

regarding length function l, and
 k(l) = minv2Fk{

P
s2Sk

B(s)⇣k,v,s(l)} be the minimum
weighted sum of shortest path lengths of all data sources of k
over any candidate host v. Further define ↵(l) =

P
K

k=1 k(l).
Then, Program (5) is equivalent to minl�0 �(l)/↵(l), i.e.,
finding a length function l : E 7! R⇤ minimizing �(l)/↵(l).

Algorithm 2: Approximation Scheme APO-MAP

Input: Network G, application set �, tolerance !
Output: Scaling ratio �, host designations {y(k, v)}k,v ,

path sets {P k
v,s

}k,v,s, bandwidth allocation L

1 Initialize ✏ = !
0 = !

4 , � =
⇣

1+✏(1+!
0)

m

⌘1+ 1
✏(1+!0) ,

l(e) = �

ce
for 8e 2 E , P k

v,s
= ; for 8k, v, s, L = ;;

2 ⇢ 0;
3 while �(l) < 1 do // phase
4 ⇢ ⇢+ 1;
5 for k = 1 . . .K do // iteration
6 ⌘ 1.0;
7 while ⌘ > 0 do // step
8 (p̃,�, ṽ, ⌘̃) PrimUpdt(G,�, k, l,!0);
9 if ⌘̃ > ⌘ then

10 � ⌘�/⌘̃; ⌘̃ ⌘;
11 y(k, v) y(k, v) + ⌘̃; ⌘ ⌘ � ⌘̃;
12 for s 2 Sk do
13 P

k
v,s
 P

k
v,s
[{p̃s};

14 L(p̃s) L(p̃s) + �s;
15 l(e) l(e)(1 + ✏�e/ce) for 8e 2 Ep̃, where

Ep̃ =
S

s2Sk
p̃s, and �e =

P
s2Sk:e2p̃s

�s;
16 Scale L after phase ⇢� 1 by 1/ log1+✏ 1/�;
17 � (⇢� 1)/ log1+✏ 1/�;
18 return (�, {y(k, v)}k,v, {P k

v,s
}k,v,s,L).

Algorithm 3: Algorithm PrimUpdt(G,�, k, l,!0)

Input: Network G, application set �, index k, length
function l, tolerance !0

Output: Paths p̃ = (p̃s)T
s2Sk

, bandwidth � = (�s)T
s2Sk

,
selected node ṽ, fraction of flow ⌘̃

// path computation
1 for 8v 2 Fk do
2 for 8s 2 Sk do
3 p̃v,s argminp2Pk

v,s
{
P

e2p
l(e)};

4 ṽ argminv2Fk{
P

s2Sk
B(s)⇣k,v,s(l)};

5 p̃s p̃ṽ,s for 8s 2 Sk;
// bandwidth allocation

6 ⌥(e) 0 for 8e 2 E ;
7 for 8s 2 Sk do
8 for 8e 2 p̃s do
9 ⌥(e) ⌥(e) +Bk(s);

10 ⌥max maxe2E{⌥(e)/ce};
11 �s Bk(s)/⌥max;
12 return (p̃,�, ṽ, ⌘̃).

Our FPTAS to PO-MAP is presented in Algorithm 2. A

bold symbol denotes a vector of normal symbols hereafter. In
the process, the algorithm keeps track of both a primal solution,
denoted by variables (y,L) (note that � can be computed based
on L), and a dual solution, denoted by the length function l

(note that both variables z and ' can be computed based on l).
Both solutions will be gradually updated. Initially, each link e’s
dual length is initialized to �/ce. The algorithm runs in phases
(Lines 3–15), in each phase going through an iteration for each
application k (Lines 5–15). In each iteration, the algorithm tries
to push exactly Bk(s) amount of flow for each data source s

of application k. This is done in steps (Lines 7–15), where in
each step, we push the same fraction of flow (⌘̃) to the same
candidate host (ṽ) from all data sources. This ensures that
when we update the primal solution, the increment in variable
y(k, v) is proportional to the flow pushed to v from any data
source s 2 Sk, thus satisfying both Constraints (4b) and (4c).
This is achieved by first calling the PrimUpdt subroutine to
get a feasible primal update, denoted by (p̃,�, ṽ, ⌘̃), and
then updating the primal solution in Lines 9–14. After primal
update, the algorithm then updates the dual lengths l(e) based
on the bandwidth �e pushed along each link e, in Line 15. It
stops when �(l) � 1, after which it then scales the obtained
flows to enforce the link capacity constraints in Lines 16–17.

A key building block is the PrimUpdt subroutine, which
produces a primal update for application k that will be
incorporated into the current primal solution. Its algorithm
is shown in Algorithm 3. It starts from finding the dual-
shortest feasible path from every data source s 2 Sk to every
candidate host v 2 Fk, denoted as p̃v,s. The candidate host ṽ
corresponding to the minimum value k(l) is picked, along
with the corresponding paths to ṽ, denoted as p̃. Next, it
derives a bandwidth allocation, such that 1) each data source
s’s bandwidth (�s) is proportional to its demand Bk(s), 2) total
bandwidth on every link e does not exceed e’s capacity ce,
and 3) the minimum ratio (⌘̃) between any source’s bandwidth
and its demand is maximized. This is done in Lines 6–11 of
Algorithm 3. Node ṽ, paths p̃ and bandwidth allocation � are
then returned along with the resulting scaling ratio ⌘̃.

PrimUpdt relies on finding the dual-shortest feasible rout-
ing paths, as in Line 9. However, this task itself is non-trivial,
as it is equivalent to the Delay Constrained Least Cost path
(DCLC) problem, which itself is NP-hard. Nevertheless, there
exist FPTASs for DCLC [26], which can output a (1 + !

0)-
approximation of the dual-shortest feasible path within time
polynomial to the input size and 1/!0. Combined with the se-
lection of ✏, !0 and �, we can prove that such an approximation
is sufficient for obtaining our desired performance guarantee.
The performance of APO-MAP is summarized in Theorem 5.1.

Theorem 5.1: Given G, �, and ! 2 (0, 1), APO-MAP (with
Line 3 of the PrimUpdt subroutine replaced by a DCLC
FPTAS) can compute a (1� !)-approximation of the optimal
PO-MAP solution, within time polynomial to both the input
size and 1/!, and hence is an FPTAS to PO-MAP. 2

Proof: We first prove the approximation ratio of APO-MAP,
and then prove its time complexity.

Part I (Approximation Ratio): We first assume the optimal
primal objective �

⇤ � 1; this assumption will be removed
later on. Due to the strong duality of LP, the optimal dual
objective �⇤ is equal to �

⇤. Let (⇢, k, ⌧) denote step ⌧ of

5

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

787

iteration k of phase ⇢ in the algorithm. Given a symbol used in
the algorithm, ⌫ 2 {l, ⇣k,v,s, k,↵,�,�s, ṽ, p̃s}k,v,s,e, we use
⌫
⇢,k,⌧ , ⌫⇢,k and ⌫⇢ to denote the corresponding values in/after

the corresponding step, iteration and phase, respectively. We
also use ⌫ to denote ⌫(l) if no ambiguity is introduced.

Based on the primal-dual updates, we have the following:
�⇢,k,⌧ =

X

e2E
cel

⇢,k,⌧�1(e) + ✏

X

s2Sk

�
⇢,k,⌧

s

X

e2p̃
⇢,k,⌧
s

l
⇢,k,⌧�1(e)

 �⇢,k,⌧�1 + ✏(1 + !
0)
X

s2Sk

�
⇢,k,⌧

s
⇣
⇢,k,⌧

k,ṽ⇢,k,⌧ ,s
,

due to that each path p̃
⇢,k,⌧
s

is a (1 + !
0)-approximation of

the dual-shortest feasible (s, ṽ⇢,k,⌧)-path, and the dual-shortest
feasible path lengths are non-decreasing during the algorithm.

As in each iteration k, we push exactly B(s) flow for 8s 2
Sk, we have the following by summing up for all steps:

�⇢,k �⇢,k�1 + ✏(1 + !
0) min

v2Fk

X
s2Sk

B(s)⇣⇢,k
k,v,s

 �⇢,k�1 + ✏(1 + !
0) ⇢,k

k
.

Summing up for all applications (iterations), we then have:
�⇢ �⇢�1 + ✏(1 + !

0)↵⇢
.

Since we know that �⇢

↵⇢ � �⇤ � 1, we further have:

�⇢ �⇢�1

1� ✏(1+!0)
�⇤

 �0

⇣
1� ✏(1+!0)

�⇤

⌘⇢

 �0

(1� ✏(1 + !0))
exp

✓
(⇢� 1)✏(1 + !

0)

�⇤(1� ✏(1 + !0))

◆
,

where the last inequality is due to that (1 + x) exp(x).

The initial dual objective value is �0 = m� given the
initial length function l. Let ⇢⇤ be the last phase before the
algorithm stops. We know that �⇢

⇤ � 1 and �⇢
⇤�1

< 1. Then
we can bound the optimal dual objective value �⇤ as follows:

�⇤ (⇢⇤ � 1) · ✏(1 + !
0)

(1� ✏(1 + !0)) ln 1�✏(1+!0)
m�

.

To bound the optimal primal objective value �
⇤, first

observe that each primal update only increases the bandwidth
on each link e by at most ce. Therefore, when the flow through
a link e increases by exactly ce, its dual length l(e) is increased
by at least (1 + ✏) times, due to the dual update in Line 15.
Now, as �⇢

⇤�1
< 1, we have l

⇢
⇤�1(e) < 1/ce for 8e 2 E .

Therefore, the final flow after phase ⇢⇤ � 1 scaled by a factor
of 1/ log1+✏ 1/� is strictly feasible. Since in each phase we
push exactly Bk(s) flow for each data stream, the scaling ratio
after ⇢⇤�1 phases is exactly ⇢⇤�1. Scaled by 1/ log1+✏ 1/�,
the scaling ratio � = (⇢⇤ � 1)/ log1+✏ 1/� is strictly feasible.

Based on these, the primal-dual ratio is bounded as follows:

�

�⇤ �
(1� ✏(1 + !

0)) · ln 1�✏(1+!
0)

m�

✏(1 + !0) · log1+✏

1
�

.

Given our selection of ✏, !0 and �, we have �

�⇤ � 1� !.

It remains to remove our assumption that �⇤ � 1. Based
on [11], if we can obtain a pair of bounds (�LB,�UB) such
that �⇤ 2 [�LB,�UB], then we can guarantee �

⇤ � 1 by
scaling all demands by 1/�LB. Following [10], we use a path-
based method to find �LB and �UB. For each data stream

(k, s), we use a binary search to find a maximum-capacity
feasible routing path p̄

k
v,s

to each candidate host v 2 Fk.
Given v, the search sets a threshold �, and then finds a
shortest (s, v)-path (w.r.t. delay) in G� , a subgraph of G

that has all links in {e : ce < �} pruned. If the path
has delay no more than Dk, � is increased; otherwise it is
decreased. Let b̄k

v,s
= mine2p̄k

v,s
{ce} be the capacity of p̄

k
v,s

,
and �̄

k
v
= mins2Sk{b̄kv,s/Bk(s)}. For each k, we then select

candidate host v̄k = argmaxv2Fk{�̄kv}, and let �̄k = �̄
k
v̄k

.
Then, our upper bound is �UB = mmink{�̄k}, as each flow
can be decomposed into up to m paths, with no contention
among each other. Let S =

P
k
|Sk| be the total number

of data streams. A lower bound is �LB = mink{�̄k}/S, by
scaling using the maximum number of competing flows.

Part II (Time Complexity): For simplicity, we define notation
O

⇤(f) = O(f logO(1) L), where f is a function of the input
size L. Based on [10], [11], the number of phases is bounded
by ⇢

⇤ d�⇤ log1+✏

1
�
e = O

⇤(�
⇤

!2), each with K iterations,
and the total number of steps is bounded by m log1+✏

1+✏

�
=

O
⇤(m�⇤

!2) plus the total number of iterations. Each step
incurs one PrimUpdt call, which both finds (approximate)
dual-shortest feasible paths for every (v, s) pair, and allocates
bandwidth. According to Xue et al. [26], each path is found
in O

⇤(1
!0 |V|m) time. Bandwidth allocation in PrimUpdt takes

O(S|V |) time, as each path consists of at most |V |� 1 links.
Combining the above, the time complexity of APO-MAP is given
by O

⇤(�
⇤

!3 S|F||V|m(m+K)).

To remove the dependency on �⇤, we employ the de-
mand scaling technique in [11]. If the algorithm does not
stop after d2 log1+✏

1
�
e phases, we know that �⇤ � 2. We

then double all demands, hence halving �⇤, and then re-run
Algorithm 2. Now, we have �⇤ 2 [1, Sm] after the initial
scaling in Part I. Hence at most O(log2(Sm)) demand scaling
rounds are needed to bring �⇤ within [1, 2], each spending
O

⇤(1
!3S|F||V|m(m+K)) time. Omitting the logarithm terms,

the final complexity is O
⇤(1

!3S|F||V|m(m + K)) combined
with the initial scaling in Part I. The theorem follows.

E. A Randomized Algorithm to O-MAP

Based on the FPTAS to PO-MAP, we further propose a
randomized algorithm to O-MAP, as shown in Algorithm 4.
It starts by solving PO-MAP using Algorithm 3. With the
fractional solution, it then randomly selects a host v 2 Fk

with probability equal to ỹ(k, v) (normalized y(k, v)) for each
application. After that, it solves the original O-MAP program
with fixed hosts v = {vk}k to ensure solution feasibility. This
turns out to be a trivial generalization of the DR subproblem
of O-SAP, and hence can be solved using the FPTAS in [3].

The performance of Algorithm 4 is summarized below.

Theorem 5.2: Given G, �, and !, Algorithm 4 outputs
a ⌦

⇣
(1�!)2 log logm

logm

⌘
-approximation of the optimal O-MAP

solution with high probability, within time polynomial to the
input size and 1/!. 2

Proof: We again first analyze the performance of AO-MAP,
and then study its time complexity.

Part I (Approximation Ratio): Let �PO-MAP be the objective
value obtained by approximately solving PO-MAP (Line 1).

6

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

788

Algorithm 4: Randomized Algorithm AO-MAP

Input: Network G, application set �, tolerance !
Output: Scaling ratio �, host selections {vk}k,v , path

sets {P k
s
}k,s, bandwidth allocation L

1 (�,y,P ,L) APO-MAP(G,�,!);
2 for k = 1 to K do
3 ỹ(k, v) y(k, v)/

P
v2Fk

y(k, v) for 8v 2 Fk;
4 Select v 2 Fk with probability ỹ(k, v) as vk;
5 Solve O-MAP (Program (3)) with fixed HD solution

v = {vk}k, with accuracy !;
6 return (�, {vk}k, {P k

s
}k,s,L).

Since PO-MAP is the relaxed problem of O-MAP, and Al-
gorithm 3 is an FPTAS, it follows that the optimal value of
the O-MAP instance satisfies �PO-MAP � (1 � !)�⇤O-MAP. Let
v = {vk}k be a possible HD solution obtained by indepen-
dently rounding for each application k, and Pv = {P k

vk,s
}k,s

be the corresponding selected path sets given v. We know that
(v,Pv,Jv), where Jv is the scaled bandwidth allocation such
that Jv(p) = L(p)/ỹ(k, vk) for 8p 2 P

k
vk,s

, is a solution to
O-MAP that satisfies Constraints (3b) and (3c) with objective
� = �PO-MAP. However, now the solution (v,Pv,Jv) may
violate Constraint (3d) due to the scaled bandwidth allocation.

For each link e 2 E , define random variable Xk(e) to be
the amount of traffic of application k going through link e

in J . The total traffic is given by random variable X(e) =P
k
Xk(e), with expectation E{X(e)} ce. Since each

application is rounded independently, all random variables
Xk(e) are independent for a given e. Further define normalized
variables eXk(e) = Xk(e)/ce, and eX(e) = X(e)/ce with
expectation E{ eX(e)} 1. Based on [15], [24], we apply the
Chernoff bound with 1 + � = 4 logm

log logm
, and we have

Pr{ eX(e) � (1 + �)} 1/m2
. (6)

In other words, the total traffic through e is at most (1 + �)
times its capacity, with a probability of at least 1 � 1/m2.
Taking the union bound over all links, the maximum capacity
violation ratio, rvio, is at most 4 logm

log logm
with a probability of

at least 1� 1/m. Finally, we integrate the violation ratio rvio
into the objective: by dividing the bandwidth allocation on
every path (and hence the objective value) by rvio, the capacity
constraints are satisfied. We then achieve a feasible solution to
O-MAP with objective of ⌦

⇣
log logm

logm

⌘
· �PO-MAP, w.h.p.

The last step (Line 5), which achieves a (1 � !)-
approximation of the optimal O-MAP solution with fixed HD,
is essential for obtaining good solutions. Although this brings
an additional factor of (1� !) to the theoretical bound of the
algorithm, in general, an extra round of solving DR outputs
much better solutions than directly using the rounded and
scaled DR solutions obtained in solving PO-MAP. Combining
the above with Theorem 5.1, the final ratio is achieved.

Part II (Time Complexity): The major complexity comes
from solving PO-MAP (Line 1) and solving O-MAP with fixed
HD (Line 5), both within O

⇤(1
!3S|F||V|m(m+K)) time.

Note that the above bound is merely a worst-case guar-
antee. In practice, our algorithm can achieve much better
solutions than its theoretical bound in general, as shown in
our simulation experiments in the next section.

VI. PERFORMANCE EVALUATION

A. Experiment Settings

We used randomly generated topologies and applications
for performance evaluation. The random topologies were gen-
erated using the Waxman model [23]. Each random topology
has 20 nodes, where 20% of all nodes were randomly selected
as facility nodes. Links were created using parameters ↵ and
� in the Waxman model, where ↵ = � = 0.6. Link capacities
were randomly generated in [10, 100] Mbps, and delays were
randomly generated in [1, 10] ms. In each experiment, we
generated 5 IoT applications. An application had [3, 10] data
streams, each from a different data source. Application delay
bounds were randomly generated in [15, 25] ms. For each data
stream, its bandwidth demand were randomly generated in
[1, 25] Mbps. We set accuracy ! = 0.5 for the approximation
algorithms. Above were the default parameters. We varied
one control parameter in each set of experiments in order for
evaluation under various scenarios.

SAP Our FPTAS to O-SAP (Algorithm 1).
MAP Our randomized algorithm to O-MAP (Algorithm 4).
ODA Optimal Delay-Agnostic algorithm that attempts all

combinations of application host designations, and
for each combination solves an edge-flow multi-
commodity flow LP that neglects applications’ delay
bounds; it yields an upper bound on the optimal
delay-aware solution.

NS (HD) Nearest Selection HD heuristic which for each ap-
plication selects the host with minimum delay from
all data sources.

RS (HD) Random Selection HD heuristic where a random
candidate host that is within the delay bound from
every data source is selected for each application.

GH (DR) Greedy Heuristic for DR that works in rounds where
in each round, first the shortest path (w.r.t. delay)
with positive capacity is found for every data stream,
and then bandwidth allocation is done as in Lines 6–
11 of Algorithm 3; it stops when any data stream’s
shortest path exceeds the application’s delay bound.

DA (DR) Delay-Agnostic optimal DR solution where an edge-
flow MCF LP, which neglects application delay
bounds, is solved; it yields an upper bound on DR.
TABLE I: Implemented Algorithms

Our comparison algorithms are shown in Table I. Note that
we proposed algorithms to solve HD and DR both jointly
(SAP, MAP, ODA) and separately (NS and RS for HD,
and GH and DA for DR). In the experiments, we further
decomposed the entire MAP algorithm into its subroutines
for solving HD (Lines 1–4) and DR (Line 5) respectively.
Each combination of HD and DR algorithms was denoted by

(a) Traffic scaling ratio (b) Running time

Fig. 1: Single-application experiments against accuracy !.

7

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

789

(a) Scaling ratio vs. # nodes (b) Scaling ratio vs. connectivity (c) Scaling ratio vs. demand (d) Scaling ratio vs. !

Fig. 2: Objective value against number of nodes, connectivity (↵,�), bandwidth demand, and accuracy (!).

(a) Running time vs. # nodes (b) Running time vs. connectivity (c) Running time vs. demand (d) Running time vs. !

Fig. 3: Running time against number of nodes, connectivity (↵,�), bandwidth demand, and accuracy (!).

{HD}+{DR}, e.g., NS+GH uses NS for HD and GH for DR.

We used the following metrics in performance evaluation.
Traffic scaling ratio is the optimization objective �, which
is the minimum ratio between the allocated bandwidth and
the demand of every data stream. Maximum delay ratio is
the average ratio between the maximum transmission delay
received by any application and its delay bound. Running time
is the average running time of an algorithm in an experiment.

We developed a C++-based simulator which implements
all the above algorithms. The Gurobi optimizer [14] was used
to solve the LPs. Experiments were conducted on a Ubuntu
Linux PC with Quad-Core 3.4GHz CPU and 16GB memory.
Each experiment was repeated for 50 times under the same
setting, and results were taken as the average over all runs.

B. Evaluation Results

1) Single-Application Scenario: Fig. 1 shows experiment
results for provisioning a single application, where we changed
the accuracy parameter ! from 0.3 to 0.8. Note that ODA is
the theoretical upper bound as it neglects the application delay
bounds. First, our algorithms achieve much better performance
than the bounds proved in Theorem 5.1, as in Fig. 1(a).
For instance, SAP achieves near-optimal solutions even when
! = 0.8. Second, SAP performs significantly better than MAP,
which matches their proved bounds. Third, the performance
degradation of both SAP and MAP regarding increasing !

is minor. On the other hand, the running times of both SAP
and MAP reduce drastically with increasing ! in Fig. 1(b).
Finally, SAP is faster than MAP, first because it does not
need to solve DR after selecting the host, and second because
it results in fewer phases than MAP by quickly pushing flow
towards each host alone, while MAP distributes flow among
all hosts simultaneously. ODA is the fastest as it neglects the
delay bounds, and hence becomes solving a linear number of

polynomial-size LPs. Combining the above, we suggest using
SAP with moderate or loose ! (e.g., ! � 0.5) for single-
application provisioning or using as an online algorithm.

2) Multi-Application Scenario: Figs. 2 and 3 show exper-
iment results for multi-application provisioning, with varying
number of nodes, connectivity, average bandwidth demand,
and accuracy !. First, MAP outperforms both RS+GH and
NS+GH in relatively large scales. Specifically, MAP can serve
up to 2⇥ the traffic that can be served by RS+GH or NS+GH
in a majority of the experiments. The cost of its superior
performance is its higher running time. MAP is slower than
ODA mainly because the latter does not consider application
delay bounds. Also, with more applications, the running time
of MAP will soon beat that of ODA, as the former is a
polynomial-time algorithm, while the latter’s time complexity
is exponential to the number of applications. The shown trends
basically match our intuition, e.g., increased nodes or links
lead to increased scaling ratios and running times, while larger
bandwidth demands of the applications lead to smaller scaling
ratios. In Fig. 3(c), the running time of MAP decreases with
the scaling ratio. This matches their dependency shown in
the proof of Theorem 5.1. However, if the objective value is
very large, such a dependency will be removed by the demand
scaling technique as illustrated in the proof. Finally, Figs. 2(d)
and 3(d) show similar results as in Fig. 1 for MAP, where
a looser accuracy parameter ! does not lead to noticeable
performance loss, but greatly reduces its running time.

The above experiments show the superior performance
of our joint algorithm MAP. In Figs. 4, we further analyze
its performance for HD and DR separately, where we com-
bined MAP’s subroutines with different heuristics respectively.
Shown in Fig. 4(a), delay-aware DR solutions (GH and MAP’s
DR subroutine) achieve better scaling ratios with larger delay
bounds, while delay-agnostic solutions do not. Comparing
different HD algorithms, MAP’s HD subroutine still achieves

8

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

790

(a) HD comparisons (b) DR comparisons

Fig. 4: HD and DR experiments with varying delay.

much better traffic scaling ratios than either NS or RS. Inter-
estingly, RS outperforms NS, which is because NS can lead
to congestion when a host is significantly closer to most data
sources than the others. Comparing different DR algorithms,
MAP’s DR subroutine also outperforms GH. On the other
hand, since given fixed HD, the DA algorithm is optimal for
delay-agnostic DR, we can see that MAP’s DR subroutine is
near the optimal when delay bounds are large. In Fig. 4(b),
with MAP’s DR subroutine, the maximum delay ratio is
always bounded by but close to 1, meaning it utilizes paths
of various delays, yet strictly sticks to the application delay
bounds. GH also respects the delay bounds, yet it uses shorter
paths, which leads to its low traffic scaling ratios in Fig. 4(a).
Both ODA and DA are delay-agnostic, hence they can result
in delays more than 2⇥ the bounds, violating application QoS
requirements. In summary, the superior performance of the
MAP algorithm comes from the advantages of both its HD
and DR subroutines, compared to the heuristic algorithms.

VII. CONCLUSIONS

In this paper, we studied the provisioning of real-time
processing applications in IoT. Two problems were defined
and proved to be NP-hard: the single-application provisioning
(SAP) problem, and the multi-application provisioning (MAP)
problem. Both problems have yet been studied to the best of
our knowledge. For SAP, we proposed an FPTAS. For MAP,
we first proposed an FPTAS to the relaxed problem where each
application is parallelizable among multiple instances, fol-
lowed by a randomized algorithm with provable performance
for the problem where applications are non-parallelizable
based on our solution to the relaxed problem. We validated the
advantages of our proposed algorithms over several heuristic
solutions through extensive simulation experiments.

ACKNOWLEDGMENT

The authors would like to thank Ms. Rui Sun for her patient
and meticulous help in improving the quality of this paper.

REFERENCES

[1] S. Basudan, X. Lin, and K. Sankaranarayanan, “A Privacy-Preserving
Vehicular Crowdsensing-Based Road Surface Condition Monitoring
System Using Fog Computing,” IEEE Internet Things J., 4(3): 772–
782, 2017.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and
Its Role in the Internet of Things,” in ACM MCC, 2012.

[3] Z. Cao, P. Claisse, R. J. Essiambre, M. Kodialam, and T. V. Lakshman,
“Optimizing Throughput in Optical Networks: The Joint Routing and
Power Control Problem,” in IEEE INFOCOM, 2015.

[4] H. Chen, G. Xue, and Z. Wang, “Efficient and Reliable Missing Tag
Identification for Large-Scale RFID Systems With Unknown Tags,”
IEEE Internet Things J., 4(3): 736–748, 2017.

[5] N. M. M. K. Chowdhury, M. R. Rahman, and R. Boutaba, “Virtual
Network Embedding with Coordinated Node and Link Mapping,” in
IEEE INFOCOM, 2009.

[6] Cisco, “Cisco IOx.” URL: http://www.cisco.com/c/en/us/products/
cloud-systems-management/iox/index.html

[7] L. Columbus, “Internet Of Things Market To Reach $267B By
2020.” URL: https://www.forbes.com/sites/louiscolumbus/2017/01/29/
internet-of-things-market-to-reach-267b-by-2020/

[8] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal Workload
Allocation in Fog-Cloud Computing Towards Balanced Delay and
Power Consumption,” IEEE Internet Things J., 3(6): 1171–1181, 2016.

[9] W. Elmenreich, “Fusion of Continuous-valued Sensor Measurements
Using Confidence-weighted Averaging,” J. Vib. Control, 13(9-10):
1303–1312, 2007.

[10] L. K. Fleischer, “Approximating Fractional Multicommodity Flow In-
dependent of the Number of Commodities,” SIAM J. Discret. Math.,
13(4): 505–520, 2000.

[11] N. Garg and J. Konemann, “Faster and Simpler Algorithms for Mul-
ticommodity Flow and Other Fractional Packing Problems,” in ACM
FOCS, 1998.

[12] A. Giordano, G. Spezzano, and A. Vinci, “Smart Agents and Fog
Computing for Smart City Applications,” in Smart-CT, 2016.

[13] M. Gowda, A. Dhekne, S. Shen, R. R. Choudhury, L. Yang, S. Gol-
walkar, and A. Essanian, “Bringing IoT to Sports Analytics,” in USENIX
NSDI, 2017.

[14] Gurobi, “Gurobi Optimizer.” URL: http://www.gurobi.com/
[15] Jiaqi Zheng, Hong Xu, Xiaojun Zhu, Guihai Chen, and Yanhui Geng,

“We’ve Got You Covered: Failure Recovery with Backup Tunnels in
Traffic Engineering,” in IEEE ICNP, 2016.

[16] J.-J. Kuo, S.-H. Shen, H.-Y. Kang, D.-N. Yang, M.-J. Tsai, and W.-T.
Chen, “Service Chain Embedding with Maximum Flow in Software
Defined Network and Application to the Next-Generation Cellular
Network Architecture,” in IEEE INFOCOM, 2017.

[17] S. Li, L. D. Xu, and S. Zhao, “The Internet of Things: A Survey,” Inf.
Syst. Front., 17(2): 243–259, 2015.

[18] S. Misra, G. Xue, and D. Yang, “Polynomial Time Approximations for
Multi-Path Routing with Bandwidth and Delay Constraints,” in IEEE
INFOCOM, 2009.

[19] M. Rost and S. Schmid, “Service Chain and Virtual Net-
work Embeddings: Approximations Using Randomized Rounding,”
arXiv:1604.02180, 2016.

[20] H. Tan, Z. Han, X.-Y. Li, and F. C. M. Lau, “Online Job Dispatching
and Scheduling in Edge-Clouds,” in IEEE INFOCOM, 2017.

[21] L. Toka, B. Lajtha, E. Hosszu, B. Formanek, D. Gehberger, and
J. Tapolcai, “A Resource-Aware and Time-Critical IoT Framework,”
in IEEE INFOCOM, 2017.

[22] L. Tong, Y. Li, and W. Gao, “A Hierarchical Edge Cloud Architecture
for Mobile Computing,” in IEEE INFOCOM, 2016.

[23] B. M. Waxman, “Routing of Multipoint Connections,” IEEE J. Sel.
Areas Commun., 6(9): 1617–1622, 1988.

[24] S. Xiao, Y. Cui, X. Wang, Z. Yang, S. Yan, and L. Yang, “Traffic-aware
Virtual Machine Migration in Topology-Adaptive DCN,” in IEEE ICNP,
2016.

[25] Y. Xiao and M. Krunz, “QoE and Power Efficiency Tradeoff for Fog
Computing Networks with Fog Node Cooperation,” in IEEE INFO-
COM, 2017.

[26] G. Xue, W. Zhang, J. Tang, and K. Thulasiraman, “Polynomial
Time Approximation Algorithms for Multi-Constrained QoS Routing,”
IEEE/ACM Trans. Netw., 16(3): 656–669, 2008.

[27] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, “Joint Optimization of
Task Scheduling and Image Placement in Fog Computing Supported
Software-Defined Embedded System,” IEEE Trans. Comput., 65(12):
3702–3712, 2016.

[28] J. Zhu, D. Li, J. Wu, H. Liu, Y. Zhang, and J. Zhang, “Towards
Bandwidth Guarantee in Multi-Tenancy Cloud Computing Networks,”
in IEEE ICNP, 2012.

9

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

791

