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The Cloud Shift

[ Cloud computing: seems an omnipotent solution to all
kinds of performance requirements
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 But is it as mighty as it seems?
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Inside the Cloud

- An illusion of infinite computing resources created by large
clusters of interconnected machines in data centers

1 Performance bottleneck: Cloud network!
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VM & Bandwidth

 Traditional approach: Network-agnostic VM allocation
1 Recent advance: Bandwidth-guaranteed VM allocation
. Or Virtual Cluster Embedding (VCE)!

¢ Existing algorithms can allocate bandwidth-guaranteed VMs with
minimum bandwidth, migration costs, etc.

 But we know that Cloud machines do fail, quite often...
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Survivable VCE

 Question: How can we ensure VM availability even when its
host machine could fail?

L Answer: We prepare extra VMs and bandwidth just in case!
d Question: And how much will that cost us?

d Answer: No problem! We can minimize that!

 Question: How are we going to achieve that?

1 Answer: Dynamic programming!
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Network Topology

J Assumption: the DCN has a tree structure

% Abstracts many common DCN topologies (FatTree, VL2, etc)
Original FatTree
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VM Survivability Model

 Primary VMs: VMs that are active during normal operations;

- Backup VMs: VMs in standby mode, activated when a
primary VM’s PM fails

s Each backup VM synchronizes the states of multiple primary VMs

 Question: Can we find a bandwidth-quaranteed allocation of
both primary and backup VMSs to cover an arbitrary single-
PM failure, with the minimum number of backup VVMs?
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Dynamic Programming for SVCE

- Given: topology tree T, request J = <N, B>

 Assumption: single PM failure

» Interpretation: a failure can be either within a subtree, or outside a
subtree, but cannot be both.

1 Key observation: each subtree’s ability to provide VMs is
independent from the rest of the tree, both during normal
operations and during an arbitrary failure

- Two layers of Dynamic Programming
«»* Outer DP: DP for entire subtrees
*»* Inner DP: DP for the first k sub-subtrees of each subtree
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DP in Details

d Outer DP: N, [n,, n,] as the minimum number of total VMs
needed in subtree T, to ensure that

¢ T, can provide at least n, VMs when no failure is in T';
¢ T, can provide at least n, VMs when any PM fails in 7,

d Inner DP: N,'[n, n,, k] as the minimum number of total
VMs needed in the first k£ subtrees of v, to ensure that
% The k subtrees can provide n, VMs when no failure is in them;
% The & subtrees can provide n, VMs when any PM fails in them.

] Alternately update the two tables:
% N, [ny, n,] depends on N,[n,, n,, d,)] (d, is the # subtrees under v);

1%

“* N, [ny, n,, k] depends on N,[n,", n,"] of lower-layer nodes.
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Work-through Example
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Work-through Example
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Work-through Example
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Work-through Example
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Work-through Example
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Heuristic SVCE
1 Optimal DP time complexity: O(|V] N°)

¢ where |V] is # tree nodes, N is # requested VMs.
(J Question: Can we find a near-optimal solution with less time?

1 Observation: if we find a normal VCE with N+~ VMSs, such
that each PM hosts at most NV VMs, then we can always
recover from any single PM failure.

J Algorithm: search from N'=1 to N, each time using an
existing VCE algorithm to find a VCE with N extra VMs, and
each PM’s # VMs is bounded by N'.

 Time Complexity: O(N:|V|log|V])
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Simulation Setups

 Tree-structured DCN
% 4-layer 8-ary (512 PMs, 73 switches)
s 5 VM slots / PM
* ToR bandwidth: 1 Gbps | Aggr/Core bandwidth: 10 Gbps

J Tenant VCs
+ 1000 requests
s 15 VMs and 300 Mbps per VM, on average
*» Poisson arrivals

d Comparison:
s OPT: Optimal DP SVCE algorithm
s HEU: Heuristic SVCE algorithm
s SBS: Shadow-based solution (dedicated VC backup)
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Simulation Results: Average VM Usage
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Simulation Results: Acceptance Ratio
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Simulation Results: Running Time
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Conclusions

- A first study on Survivable VCE

** A two-layer optimal DP algorithm
** A faster near-optimal heuristic algorithm

J Discussions
*» Extension to tree-like topologies (FatTree, VL2, etc.)
«»» Extension to cover a constant number of simultaneous failures

J Future work
*» SVCE on generic data center topologies (BCube, JellyFish, etc.)
% Covering link failures in addition to PM failures

& ARIZONA STATE 24/25
UNIVERSITY



QAEA?

THANK YOU VERY MUCH!

& ARIZONA STATE 25/25
UNIVERSITY



Hose Model Bandwidth Guarantee

J Request J = <N, B>
* N=7, B=100 Mbps

Q 200 Mbps

........................... ; Number. Of VMS TC can Offer'
: (bandwidth constrained):

n.&[0,2]1n[5,7]

* *
-----------------------------
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DP in Details /2 Bandwidth

feasible VMs |,

1 Outer DP update: ne if ny = 0,ng € [0, cp] r*@j
<+ PM level: Ny[ng,nq] = { if n1 =0,ng @ An < ey 3)
Lower bound of oo  otherwise Bandwidth
upper bracket bw feasible VM infeasible VMs

( N![ng,ni,d,| if ng,n; € Ay,

N/ [Ay,n1,dy] if ng € An,n1 € Ay,
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| Ny Auydo] if no,na € Ay

< Switch level: N, [ng,n;] = <

J Inner DP update:

0 ifng=n1=0
** No subtree: N,{,[no,nl,O]:{ no=m

oo otherwise

% kth SUbtree: N’ [n, s, k] = min {N;,[ng,n;,k- 1] + No, [, n”
Tbo,no )
nj n'l'
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Work-through Example
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