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Abstract—Cloud computing has emerged as a powerful and
elastic platform for internet service hosting, yet it also draws con-
cerns of the unpredictable performance of cloud-based services
due to network congestion. To offer predictable performance, the
virtual cluster abstraction of cloud services has been proposed,
which enables allocation and performance isolation regarding
both computing resources and network bandwidth in a simplified
virtual network model. One issue arisen in virtual cluster alloca-
tion is the survivability of tenant services against physical failures.
Existing works have studied virtual cluster backup provisioning
with fixed primary embeddings, but have not considered the
impact of primary embeddings on backup resource consumption.
To address this issue, in this paper we study how to embed virtual
clusters survivably in the cloud data center, by jointly optimizing
primary and backup embeddings of the virtual clusters. We
formally define the survivable virtual cluster embedding problem.
We then propose a novel algorithm, which computes the most
resource-efficient embedding given a tenant request. Since the
optimal algorithm has high time complexity, we further propose a
faster heuristic algorithm, which is several orders faster than the
optimal solution, yet able to achieve similar performance. Besides
theoretical analysis, we evaluate our algorithms via extensive
simulations.
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1. INTRODUCTION

Cloud computing has emerged as a trending platform for
hosting various services for the public. Among different cloud
computing platforms, the Infrastructure-as-a-Service (IaaS)
clouds offer virtualized computing infrastructures to public
tenants in order to host tenant services. Enabled by advanced
resource virtualization technologies, the clouds support in-
telligent resource sharing among multiple tenants, and can
provision resources per tenant demand.

However, due to the massive migration of services to the
cloud, there is increasing concern about the unpredictable
performance of cloud-based services. One major cause is the
lack of network performance guarantee. All the tenants have
to compete in the congested cloud network in an unorganized
manner. This has motivated recent efforts on cloud resource
sharing with network bandwidth guarantee, for which a novel
cloud service abstraction has been proposed, named virtual
cluster (VC) [4]. The VC abstraction allows each tenant to
specify both the virtual machines (VMs) and per-VM band-
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width demand of its service. The cloud then realizes the request
by allocating VMs on physical machines (PMs), as well as
reserving sufficient bandwidth in the network to guarantee the
bandwidth demand in the hose model [4], [30]. The process of
resource allocation for virtual clusters is called Virtual Cluster
Embedding (VCE). Algorithms have been developed for VCE
with various objectives and constraints [4], [18], [26], [30].

One missing perspective in existing VCE solutions is the
availability of tenant services. Due to the large-scale nature of
cloud data centers, PM failures can happen frequently in the
cloud [22]. When such failure happens, all services who have
their VCs fully or partly embedded on the failed PMs will
be affected, possibly receiving degraded service performance
or even interruption of operation. This not only impairs the
tenants’ interests, but also incurs additional cost to the cloud
due to violation of service-level agreements.

To achieve the high availability goal of tenant services, one
common practice is to enable service survivability, by utilizing
extra resources to help services recover quickly when actual
failures happen. A survivability mechanism can be either pro-
active or reactive. A pro-active mechanism provisions backup
resources at the time of service provisioning, prior to the actual
happening of failures. Due to this, it can offer guaranteed
recovery against a certain level of failures in the substrate, at
the cost of underutilized resources when no failure is present.
On the contrary, a reactive mechanism only looks for backups
as a reaction to actual failures. While this means less reserved
resources in the normal operation, a reactive mechanism may
not always find a feasible recovery during the failure, and thus
cannot guarantee the survivability of the service.

In this paper, we study how to efficiently provide pro-
active protection for tenant services under the VC model. In
particular, we aim at embedding tenant VC requests surviv-
ably such that they can recover from any single-PM failure
in the data center, meanwhile minimizing the total amount
of resources reserved for each tenant. We formally define
survivable VC embedding as a joint resource optimization
problem of both primary and backup embeddings of the VC.
Following existing work [4], [30], we assume the data center
has a tree structure, which abstracts many widely-adopted data
center architectures. We then propose an algorithm to optimally
solve the embedding problem, within time bounded by a
polynomial of the network size and the number of requested
VMs (pseudo-polynomial time to input size). The algorithm
is based on the observation that the embedding decisions are
independent for each subtree in the same level. Since the
optimal approach is time-consuming, we further propose a
faster heuristic algorithm, whose performance is comparable to
the optimal in practical settings. We conduct both theoretical
analysis and simulation-based performance evaluation, which
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have validated the effectiveness of our proposed algorithms.
Our main contributions are summarized as follows:

• To the best of our knowledge, we are the first to study
the survivable and bandwidth-guaranteed VC embedding
problem with joint primary and backup optimization.

• We propose a pseudo-polynomial time algorithm that
finds the most resource-efficient survivable VC embed-
ding for each tenant request.

• We further propose a heuristic algorithm that reduces
the time complexity of the optimal algorithm by several
orders, yet has similar performance in the online scenario.

• We use extensive experiments to evaluate the performance
of our proposed algorithms.

The rest of this paper is organized as follows. Section 2
presents the background and related work on VC embedding,
as well as survivable cloud service provisioning. Section 3
describes the network service model, introduces our pro-active
survivability mechanism, and formally defines the survivable
VC embedding problem. Section 4 presents our optimal al-
gorithm, and theoretical analysis for the proposed algorithm.
Section 5 presents our efficient heuristic algorithm and proves
its feasibility. Section 6 shows the evaluation results of our
proposed algorithms, compared to a baseline algorithm. Sec-
tion 8 concludes this paper.

2. BACKGROUND AND RELATED WORK

A. Virtual Cluster Abstraction

Virtual cluster (VC) is a newly proposed cloud service ab-
straction, which offers bandwidth guarantee over existing VM-
based abstractions [4]. In the VC model, the tenant submits its
service request in terms of both the number of VMs and the
per-VM bandwidth demand. A tenant request, defined as a
tuple 〈N,B〉, specifies a virtual topology where N uniform
VMs are connected to a central virtual switch, each via a
virtual link with bandwidth of B, as shown in Fig. 1. To fulfill
the request, the cloud should provision N VMs in the substrate
data center, with bandwidth guaranteed in the hose model (to
be detailed in Section 3). In short words, hose model brings
two major benefits: reduced model complexity (user specifies
per-VM bandwidth instead of per-VM pair bandwidth as in the
traditional pipe model [8]), and simple characterization of the
minimum bandwidth requirement on each link [4]; interested
readers are referred to [4] and [8] for details.

  

N  VMs

Virtual switchJ = <N, B>
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Fig. 1: Virtual cluster abstraction.
Ballani et al. [4] first proposed the VC abstraction for

cloud services with hose-model bandwidth guarantee. They
characterized the minimum bandwidth required on each link
to satisfy the hose-model bandwidth guarantee, and developed
a recursive heuristic for computing the VC embedding with
minimum bandwidth consumption. Based on it, Zhu et al. [30]
proposed an optimal dynamic programming algorithm to em-
bed VC in the lowest subtree in tree-like data center topolo-

gies. They also proposed a heuristic algorithm for VCs with
heterogeneous bandwidth demands of their VMs. TIVC [18]
extends Oktopus with a time-related VC model that takes into
consideration the dynamic traffic patterns of cloud services.
SVC [26] also extends Oktopus, and considers the statistical
distribution of bandwidth demands between VMs. It proposes
another dynamic programming algorithm to tackle the uncer-
tain bandwidth demands. DCloud [14] incorporates deadline
constraints into the VC abstraction. Instead of guaranteeing
per-VM bandwidth, it guarantees that each accepted job will
finish execution within its specified deadline. In a recent work,
Rost et al. [17] proposed that the VC embedding problem
could be solved in polynomial time. Yet, their model does
not capture the minimum bandwidth required on each link to
satisfy VM bandwidth requirements, which was characterized
originally in [4]; as a result, their solution may over-provision
bandwidth for VCs. Recently, elastic bandwidth guarantee has
drawn attention [9], [25]. Yu et al. [25] proposed dynamic pro-
gramming algorithms for dynamically scaling VCs, optimizing
virtual cluster locality and VM migration cost. Fuerst et al. [9]
also studied VC scaling minimizing migrations and bandwidth;
their approach relies on the concept of center-of-gravity, which
is determined by the location of the central switch.

None of the above has considered survivability in VC
embedding. Existing survivability mechanisms, such as those
shown in the next subsection, do not lead to satisfactory
solutions when directly applied to VC embedding, due to their
lack of consideration for bandwidth requirement and/or lack of
performance guarantee. This paper focuses on deriving theoret-
ically guaranteed solutions for the survivable VC embedding
problem, as well as promising (low-complexity) heuristics.

Other problems similar to VC embedding include
bandwidth-guaranteed VM embedding [7] and virtual net-
work/infrastructure embedding [10]. The former problem is
topology-agnostic, and only considers bandwidth on edge
links; the latter considers a more general model where the
virtual topology can be arbitrary graphs, hence it commonly
suffers from high model complexity (to be detailed below).

B. Survivable Virtual Cloud Service

Providing survivability guarantee for VCs has been studied by
Alameddine et al. [2], [3]. Given a fixed primary embedding
of a VC, they proposed a heuristic solution to ensure 100%
survivability for the VC with minimum backup VMs and
bandwidth [2]. They further considered inter-VC bandwidth
sharing to reduce backup bandwidth in [3]. However, their
solutions did not consider the impact of the primary embedding
to backup resource consumption. In this paper, we propose to
jointly optimize both primary and backup resources of a VC,
which can result in reduced backup resource consumption.
Also, we propose an optimal solution, rather than heuristic
solutions in [2], [3].

Beyond the VC abstraction, many have studied offering
survivable virtual cloud services under various computing and
network models [5], [6], [15], [16], [20], [23], [24], [29].
A first line of research focuses on providing survivable VM
hosting in the cloud. Nagarajan et al. [16] proposed the first
pro-active VM protection method, which leverages the live
migration capability of the Xen hypervisor to protect VMs
from detected failures. Based on this, Machida et al. [15]
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studied redundant VM placement to protect a service from k
PM failures. Bin et al. [5] also studied VM placement for k-
survivability, and proposed a shadow-based solution for VMs
with heterogeneous resource demands. The above papers do
not offer bandwidth guarantee for VMs. Our work utilizes a
similar survivability mechanism as in [5], where a predicted
physical failure will trigger migration of the affected VMs to
its backup location. Yet we consider bandwidth guarantee in
addition to VM placement, which complicates the problem and
differentiates our work from the above.

Along another line, many solutions focus on survivable
service hosting using the virtual infrastructure (VI) abstrac-
tion [20], [23], [24], [29]. A VI is a general graph, where
each node or link may have a different resource demand, and
an embedding is defined as two mappings: virtual node (VM)
mapping and virtual link mapping; the pipe model is used in
the VI abstraction instead of the hose model as in the VC
abstraction. For example, Yeow et al. [23], Yu et al. [24]
and Xu et al. [20] investigated survivable VI embedding
through redundancy. They formulated the problem with various
objectives and constraints, and designed heuristic algorithms.
From a different angle, Zhang et al. [29] proposed heuristic
algorithms to embed VIs based on the availability statistics of
the physical components. The VI abstraction is more general
than the VC abstraction, however, it is both hard to analyze
theoretically and difficult to implement in large-scale networks
due to its intrinsic model complexity [4]. An even more general
model was proposed by Guo et al. [12], where a bandwidth
requirement matrix is used to describe the bandwidth demand
between each and every pair of virtual nodes; it suffers from
even higher model complexity than the VI abstraction.

CloudMirror [13] proposes a tenant application graph
model for bandwidth guarantee, and discusses a heuristic op-
portunistic solution for high-availability that balances between
bandwidth saving and availability. Bodik et al. [6] studied
general service survivability in bandwidth-constrained data
centers. Based on the service characteristics of Bing, they
proposed an optimization framework and several heuristics
to maximize fault-tolerance meanwhile minimizing bandwidth
under the pipe model (per-VM pair bandwidth demand).

Survivability has been studied extensively in conventional
communication networks and optical networks [19], [21], [28].
Existing work focuses on providing connectivity guarantee
against network link and switch failures. The problem studied
in this paper focuses on protecting tenant services from PM
failures, which are different from link and switch failures.

3. NETWORK MODEL AND PROBLEM STATEMENT

We study service provisioning in an IaaS cloud environment,
where the cloud offers services in the form of inter-connected
VMs. To request a service, the tenant submits its request in
terms of both VMs and network bandwidth. A cloud hypervisor
processes requests in an online manner. For each request, the
hypervisor first attempts to allocate enough resources in the
data center. If the allocation succeeds, it then reserves the
allocated resources and provisions the VC for the tenant. The
VC will exclusively use all reserved resources until the end
of its usage period, when the hypervisor will then revoke all
allocated resources of the VC. If the allocation fails due to
lack of resources, the hypervisor rejects the request.

A. Network Service Model

Formally, each tenant request is defined as J = 〈N,B〉, where
N is the number of requested VMs, and B ≥ 0 is the per-VM
bandwidth demand.

Following existing work [4], [30], we assume that the data
center has a tree-structure topology. In fact, many commonly
used data center architectures have tree-like structures (Fat-
Tree [1], VL2 [11], etc.; see Section 7), where our proposed
algorithms can be adopted with simple abstraction of the
substrate. The substrate data center is defined as an undirected
tree T = (V,L), where V is the set of nodes, and L is the set
of physical links. The node set is further partitioned into two
subsets V = H∪S, where H is the set of PMs that host VMs,
and S is the set of abstract switches which perform networking
functions. Note that each abstract switch can represent a group
of physical switches in the data center. Each PM is a leaf node,
while each switch is an intermediate node in the topology.

Without loss of generality, the substrate can be viewed as
a rooted tree, and we pick a specific node r ∈ S as its root,
which generally represents all core switches. For each node v,
we use Tv to denote the subtree rooted at v. We use lv ∈ L
to denote the out-bound link of Tv , i.e., the link adjacent to
node v and on the shortest path from v to global root r. We
use dv ≥ 0 to denote the number of children of v in the tree.

For each PM h ∈ H , we define ch as the number of
available VM slots on h. For each node v ∈ V , we define
bv as the available bandwidth on its out-bound link lv .

B. Virtual Cluster Embedding

To fulfill a request J = 〈N,B〉, the cloud needs to allocate N
VMs with bandwidth guarantee in the hose model [8]. Given
subtree Tv , let nv be the number of VMs allocated in Tv , then
the minimum bandwidth required on link lv is given by

B(lv) = min{nv, N − nv} ·B (1)
i.e., the bandwidth demand of VMs either inside Tv or outside
Tv , whichever is smaller. In other words, given link bandwidth
bv , the number of VMs allocated within Tv , nv , must satisfy

nv ∈ [0,
bv
B

] ∪ [N − bv
B
,N ] (2)

For simplicity of illustration, we define Λv =(
[0, bvB ] ∪ [N − bv

B , N ]
)
∩ [0, N ] as the feasible range of

VMs w.r.t. the bandwidth of node v, and Λv as its complement
set over the universe [0, N ]. We also define λv = dN − bv

B e as
the lower bound of the upper feasible range, if N− bv

B > N/2.

Definition 3.1. Given substrate T = (V,L) and request J =
〈N,B〉, a Virtual Cluster Embedding (VCE) is defined by
a VM allocation function,

C : H 7→ Z∗

denoting the number of VMs allocated on each host, which
satisfies the following properties:

1) C(h) ≤ ch for any h ∈ H ,
2) B(lv) = min{nv, N − nv} · B ≤ bv for any lv ∈ L,

where nv =
∑

h∈Tv∪H C(h), and
3)
∑

h∈H C(h) = N . 2

Note that bandwidth allocation B is implicitly defined, as
it can be computed based on VM allocation C as in Eq. (1).
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J = <8, 100Mbps>
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(b) VCE of J with 8 VMs
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(c) SVCE of J with 12 VMs in total
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s1 s2
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(d) SVCE of J with 11 VMs in total (optimal)
Fig. 2: VCE and SVCE comparison of J = 〈8, 100Mbps〉.

Fig. 2(b) shows an embedding of the tenant VC request
J = 〈8, 100Mbps〉 on a 3-level 2-ary tree topology rooted at
node s3, where PM 1 has 4 VM slots and PMs 2–4 each has
3 VM slots, and each link has bandwidth of 400Mbps. 8 VMs
are allocated on PMs 1, 2 and 3 to fulfill the request. Note that
link bandwidth constraints are satisfied based on Eq. (1), as
shown. For example, although the subtree rooted at switch s1
contains 7 working VMs, only min{7, 8−7}·100 = 100Mbps
bandwidth is required on its out-bound link as shown.

If a tenant request is accepted, it then exclusively uses all its
allocated resources, including both VM slots C(h) for ∀h ∈ H
and bandwidth B(lv) for ∀v ∈ V . This ensures guaranteed
resources to the tenant service, leading to predictable service
performance. Finding VCE has been addressed in [18], [30].

C. Survivability Mechanism

Existing work for VCE does not consider service availability
against physical failures. For example, when a PM fails, all
services with VMs hosted on it will be interrupted. Moreover,
due to lack of pre-provisioned backup resources, the cloud may
not be able to recover the affected services in a short period of
time. This will lead to violated service-level agreements, and
further economic losses to both the tenants and the cloud.

We use a pro-active survivability mechanism to improve
service availability. The idea is to pre-reserve dedicated backup
resources for each service, and pre-compute the recovery
plan against any possible failure scenario, during the initial
embedding process. During the life cycle of the service,
a predicted physical failure will trigger the pre-determined
automatic failover process, which will migrate the affected
VMs to their backups.This way, the interruption period of the
service is minimized. Note that while failures are frequent in
the cloud, simultaneous PM failures are relatively rare [22].
Hence we only focus on the single-PM failure scenario, where
each failure is defined by the failed PM alone: F ∈ H . Link
and switch failures are not considered, as modern data centers
typically have rich path diversity between any pair of PMs [1],
[11], [13], which can effectively protect over these failures.

To realize this mechanism, the key point is to reserve suf-
ficient backup resources during the initial embedding process.
Specifically, the cloud needs to reserve both backup VM slots
and backup bandwidth for the service. To characterize the
total VM and bandwidth consumption, and the survivability
guarantee of a VC, we define the following concept:

Definition 3.2. Given substrate T = (V,L) and request J =
〈N,B〉, a Survivable Virtual Cluster Embedding (SVCE)

is defined by a tuple of allocation functions (Cs,Bs), with
Cs : H 7→ Z∗

denoting the total number of VMs allocated on each PM, and
Bs : L 7→ R∗

denoting the total bandwidth allocated on each link, such that
during any single-PM failure F ∈ H , there still exists a VCE
of J , in the auxiliary topology TJ ,F = (V \ {F}, L \ {lF })
with resources on nodes and links defined as the remaining
allocated resources, i.e., cJ ,F

h = Cs(h) for ∀h ∈ H \ {F} and
bJ ,F
v = Bs(lv) for ∀v ∈ V \ {F}. 2

The above definition does not explicitly require a VCE
in the normal operation (when no failure happens). Such
requirement is implicit, because after allocation, the VCE for
any failure scenario can be used in the normal operation. We
call the VCE used in the normal operation as the primary
working set (PWS), and the VCE used in failure F as the
recovery working set (RWS) regarding F . We also use working
VMs to denote the set of VMs that are used (active) in a specific
scenario, compared to the set of backup VMs that remain
inactive. Note that given the SVCE, both working sets can
be easily computed using existing VCE algorithms [18], [30].
The cloud pre-computes these VCEs in all possible scenarios,
hence when failure happens, the recovery process can quickly
find the backup resources needed for each affected VM.

Fig. 2(c) shows an SVCE of the tenant request J =
〈8, 100Mbps〉. Compared to the VCE which allocates exactly
N = 8 VMs, in total 12 VMs are provisioned in the SVCE.
During the failure of any PM, 1) the number of remaining VMs
is always no less than N = 8, and 2) a VCE exists under the
hose model (with no more than 4, 2 and 3 VMs on one side
of the link PM 1–s1, the link PM 3–s2 and any other link
respectively). Hence the given SVCE can always recover the
requested VC during any failure. Note that we can assign the
RWS during arbitrary failure as the PWS. In this example, the
dark blue VM slots on PM 1 to 3 are assigned as the PWS,
while the green VM slots are backups.

D. Resource Optimization

The problem we study is to find the SVCE that uses minimum
resources in the cloud. Moreover, we are interested in finding
the SVCE that occupies the minimum number of VM slots,
in order to accommodate as many future requests as possible.
Formally, we study the following optimization problem:

Definition 3.3. Given substrate T = (V,L) and request J =
〈N,B〉, the Survivable Virtual Cluster Embedding Problem
(SVCEP) is to find an SVCE of request J that consumes the
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minimum number of VM slots in the substrate T . 2

The necessity of resource optimization is illustrated in
Figs. 2(c) and 2(d). While Fig. 2(c) indeed shows an SVCE
of J = 〈8, 100Mbps〉, it consumes 4 backup VMs, due to
that a single failure at PM 1 will affect 4 VMs. On the
contrary, Fig. 2(d) shows a different SVCE that consumes
only 3 backup VM slots, and is optimal regarding total VM
slots consumption. With less consumed resources, the data
center can accept more tenant requests in the future. Note
that although we focus on minimizing VM consumption, our
proposed algorithms can be extended to minimize bandwidth
as well; see Section 7. In the next two sections, we will present
our proposed algorithms for solving SVCE.

4. OPTIMAL ALGORITHM

A. Algorithm Description

We start from designing an algorithm that solves SVCEP op-
timally. The algorithm works in a bottom-up manner: starting
from the leaf nodes up to the root, the algorithm progressively
determines the minimum number of total VMs needed in the
subtree rooted at each node, each time solving a generalized
problem of SVCEP.

Formally, define the following generalization of SVCEP:

Definition 4.1. Given substrate T = (V,L), request J =
〈N,B〉, an arbitrary node v ∈ V , and two nonnegative
integers n0 ∈ [0, N ] and n1 ∈ [0, N ], the generalized problem
SVCEP-GP seeks to find the minimum number of VMs needed
in Tv , to ensure that Tv can provide at least n0 working VMs
when no failure happens in Tv , and at least n1 working VMs
during arbitrary (single-PM) failure in Tv . 2

Remark 4.1. Both n0 and n1 concern not only the VM slots
that can be offered by each child subtree of node v, but also the
node’s out-bound bandwidth bv . In other words, there exists a
feasible solution to SVCEP-GP with v, n0 and n1 if and only
if there exist two integers ñ0 ≥ n0 and ñ1 ≥ n1, such that

max{min{ñ0, N − ñ0},min{ñ1, N − ñ1}} ≤ bv
and all child subtrees of v can jointly offer exactly ñ0 and ñ1
VMs in the normal and worst-case failure scenarios (failure
resulting in minimum number of available VMs) respectively.

Remark 4.2. Note that given v, n0 and n1, a feasible solution
of SVCEP-GP does not guarantee that the subtree Tv can
provide exactly n0 VMs if no failure happens in Tv , or n1 VMs
if arbitrary failure happens in Tv . It only requires that Tv can
offer at least n0 or n1 VMs in either scenario respectively. For
example, a subtree with out-bound bandwidth of 200Mbps can
offer 6 VMs for request J = 〈8, 100Mbps〉 if its child subtrees
can jointly offer 6 VMs, but cannot offer exactly 5 VMs due
to lack of bandwidth in the hose model. However, as we will
prove in the next subsection, the optimal solution to SVCEP-
GP with v = r and n0 = n1 = N yields an optimal solution
to the original SVCEP, and vice versa.

Utilizing the above subproblem structure, we propose the
following dynamic programming (DP) algorithm to compute
the optimal solution by solving a sequence of SVCEP-GP in-
stances. Define Nv[n0, n1] as the optimal solution to SVCEP-
GP on node v, with non-negative integers n0 and n1. The
values are computed for PMs and switches as follows:

PM computation: For leaf node h ∈ H , we have

Nh[n0, n1] =


n0 if n1 = 0, n0 ∈ [0, ch] ∩ Λh

λh if n1 = 0, n0 ∈ Λh, λh ≤ ch
∞ otherwise

(3)

Explanation: The number of working VMs that a PM can
offer is bounded by three factors: the number of available slots
ch, the out-bound bandwidth bh, and the requested VM number
N . In the normal operation, the minimum number of VMs to
offer n0 working VMs is equal to n0, if n0 is in the feasible
range bounded by bandwidth bh. Recall that Λv (Λv) defines
the feasible (infeasible) range of working VMs in Tv w.r.t.
bandwidth, and λv is the lower bound of the upper range of
Λv . If n0 ∈ Λh, the PM cannot offer exactly n0 VMs due to
the bandwidth limit; however, if there are at least λh available
slots, the PM can offer λh VMs, which guarantees at least n0
VMs in the PWS with the minimum total VMs. Note that n1
always equals 0, as when this PM fails, no VM can be offered.
All other entries are∞, meaning such instances are infeasible.

Switch computation: The computation for a switch node is
more complicated, as there are exponential number of ways
to write an integer value (n0 or n1) as the sum of dv integer
values, where dv is the number of children of node v. However,
we observe that the allocation in each subtree is independent
from the other subtrees. Hence we employ another level of
dynamic programming to aggregate results from child subtrees.

Define N ′v[n0, n1, k] as the minimum number of total VMs
in Tv , to ensure that Tv can provide at least n0 working VMs
in the normal operation, and at least n1 working VMs during
arbitrary failure in Tv , using the first k subtrees of Tv , where
k ∈ {0, · · · , dv}. Note that N ′v[n0, n1, k] does not consider
the out-bound bandwidth bv of node v. We first establish the
relationship between Nv and N ′v as:

Nv[n0, n1] =


N ′v[n0, n1, dv] if n0, n1 ∈ Λh

N ′v[λv, n1, dv] if n0 ∈ Λh, n1 ∈ Λh

N ′v[n0, λv, dv] if n0 ∈ Λh, n1 ∈ Λh

N ′v[λv, λv, dv] if n0, n1 ∈ Λh

(4)

for each switch node v ∈ S and n0, n1 ∈ {0, · · · , N}.
Explanation: Based on their definitions, Nv[n0, n1] and

N ′v[n0, n1, dv] only differ in that the latter does not consider
the out-bound bandwidth at node v. Hence we apply the
bandwidth constraints to obtain Nv[n0, n1] from N ′v: if bv
cannot support n0 (n1) working VMs in Tv , then we take
the minimum value λv that both can be supported by bv and
is at least n0 (n1) as desired. Note that both Nv[n0, n1] and
N ′v[n0, n1, k] are non-decreasing in either n0 or n1 based on
definition. Hence the above defined Nv[n0, n1] is optimal given
the optimality of all its dependent N ′v[n′0, n

′
1, dv] values, for

n′0 ∈ {n0, λv} and n′1 ∈ {n1, λv}.
Inner DP: The value of N ′v[n0, n1, k] is computed from k = 0
to dv . The initial iteration where k = 0 is computed as:

N ′v[n0, n1, 0] =

{
0 if n0 = n1 = 0

∞ otherwise
(5)

since only 0 VMs can be offered using 0 subtrees. Based on
this, each of the other iterations computes N ′v[n0, n1, k] based
on the values N ′v[n′0, n

′
1, k − 1] computed in the (k − 1)-th

iteration as well as the values Nuk
[n′′0 , n

′′
1 ] computed for the
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k-th child node uk of node v, as shown in Eq. (6).

N ′v[n0, n1, k] = min
n′
0,n

′′
0 ,

n′
1,n

′′
1

{
N ′v[n′0, n

′
1, k − 1] +Nuk

[n′′0 , n
′′
1 ]

∣∣∣∣
n′0 + n′′0 ≥ n0
min{n′0 + n′′1 , n

′′
0 + n′1} ≥ n1

}
(6)

Explanation: The computation of N ′v[n0, n1, k] iterates
over four variables: n′0, n′1, n′′0 and n′′1 . The rationale is that,
either in the normal operation or during arbitrary failure, the
required working VMs in the first k subtrees of Tv can be split
into two parts: the VMs in the first (k − 1) subtrees, and the
VMs in the k-th subtree. Moreover, since we assume that only
single PM failure can happen at any time, once the failure
happens within one part, the other part is assured to work
in the normal operation. Hence we know how the required
working VMs n0 and n1 should be split between the two parts.
Specifically, we have n′0 + n′′0 ≥ n0 in the normal operation;
the failure can happen in either the first or the second part, and
the worst-case failure is the one that results in fewer working
VMs: min{n′0 + n′′1 , n

′′
0 + n′1} ≥ n1.

Algorithm 1: Find optimal SVCE minimizing VMs
Input: Topology T = (V,L), request J = 〈N,B〉
Output: SVCE (Cs,Bs)

1 for each node v from bottom to top do
2 if v is a leaf node then
3 for n0, n1 ∈ {0, . . . , N} do
4 Compute Nv[n0, n1] as in Eq. (3);
5 else
6 Compute N ′v[n0, n1, 0] as in Eq. (5) for ∀n0, n1;
7 for k = 1 to dv do
8 for n0, n1 ∈ {0, . . . , N} do
9 Compute N ′v[n0, n1, k] as in Eq. (6);

10 for n0, n1 ∈ {0, . . . , N} do
11 Compute Nv[n0, n1] as in Eq. (4);
12 if Nr[N,N ] =∞ then
13 return Infeasible.
14 else
15 Backtrack the DP process to find allocations Cs(h)

for ∀h ∈ H and Bs(lv) for ∀v ∈ V ;
16 return SVCE (Cs,Bs).

Algorithm 1 shows the whole procedure of the dynamic
programming. The algorithm first computes all the entries of
Nv[n0, n1] in a bottom-up manner. The order of computation
guarantees that during the computation of an entry in either Nv

or N ′v , all its depending entries have already been computed in
previous iterations. After computation, if the value Nr[N,N ]
is feasible, the algorithm then backtracks the DP process to
obtain the exact VM and bandwidth allocations in each sub-
tree. VM allocation can be determined by recording the path
towards each entry in the table during DP, while bandwidth
can be determined based on n0 and n1 due to Eq. (1).

B. Algorithm Analysis

The following theorems deliver the optimality and the
running time of our proposed algorithm. For clarity of pre-
sentation, we refer readers to [27] for rigorous proofs of the
theorems and lemmas in this subsection.

Lemma 4.1. Given an allocation of VMs in any subtree Tv for
J = 〈N,B〉, if the subtree can offer nv ∈ (N/2, N ] working
VMs in a scenario, then it can offer any number of working
VMs less than or equal to n−v = N −nv in the same scenario
without increasing bandwidth on any link. 2

Lemma 4.2. Given an allocation of VMs in any subtree Tv for
J = 〈N,B〉, if the subtree can offer more than N working
VMs in a scenario, then it can offer exactly N VMs in the
same scenario, without increasing bandwidth on any link. 2

Theorem 4.1. Given an instance of SVCEP, Algorithm 1
returns the optimal solution if the instance is feasible, and
returns “Infeasible” otherwise. 2

Theorem 4.2. The worst-case time complexity of Algorithm 1
is bounded by O(|V | ·N6), where |V | is the network size and
N is the request size (the number of VMs requested). 2

Based on Theorem 4.1, the solution is guaranteed to offer
a feasible VCE of J = 〈N,B〉 using the allocated resources
when facing any single PM failure. To find the RWS for each
failure, one can apply existing VCE algorithms [18], [30] in
the auxiliary topology where VM slots and bandwidth are the
same as allocated except for the failed PM. As mentioned in
Section 3-C, the RWS of any failure can be used as the PWS.

5. EFFICIENT HEURISTIC

The algorithm proposed in Section 4 optimally solves SVCEP.
However, its worst-case time complexity can be as high as
Θ(|V | ·N6), which may be too expensive when a tenant asks
for many VMs. In this section, we propose an efficient heuristic
algorithm that runs in O(N · |V | log |V |) time.

Before the algorithm, we first state the following lemma,
whose proof is also detailed in [27]:

Lemma 5.1. Given substrate T , request J = 〈N,B〉, and an
integer N ′ ∈ [1, N ], a VCE of the augmented request J ′ =
〈N +N ′, B〉 yields a feasible SVCE of J as long as each PM
is allocated with no more than N ′ VMs in the VCE. 2

Based on Lemma 5.1, we design a heuristic algorithm
shown in Algorithm 2, based on the algorithm in [30].

Algorithm 2: Heuristic for finding SVCE
Input: Topology T = (V,L), request J = 〈N,B〉
Output: SVCE (Cs,Bs)

1 for N ′ = 1 to N do
2 Cs,Bs ← FindFeasibleV CE(T, 〈N +N ′, B〉);
3 if (Cs,Bs) is a feasible solution then
4 return SVCE (Cs,Bs).
5 return Infeasible.

The algorithm iterates from N ′ = 1 to N , each time calling
FindFeasibleV CE to find a feasible VCE for the augmented
request J ′ = 〈N + N ′, B〉. If such feasible embedding is
found at a specific value of N ′, the total number of VMs
provisioned is exactly N +N ′, hence yielding a solution with
minimum VMs under this algorithm. The algorithm stops when
no solution is found in N iterations, because the number of
backup VMs should not exceed the number of requested VMs.

The subroutine FindFeasibleV CE uses the algorithm
in [30] to find a VCE for J ′. Minor modification is done
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to enforce the per-PM VM limit N ′. Due to page limit, we
only briefly introduce the idea of the algorithm. For each node,
the algorithm uses a data structure called the Allocation Range
(AR) to record the number of VMs that can be allocated within
its subtree. The AR consists of N + N ′ + 1 bits for request
J ′, where the (i + 1)-th bit is 1 if the subtree can offer i
VMs, and 0 otherwise. Continuous 1 bits are aggregated into
sections defined by both end-points. For example, a section
[5, 7] means that the subtree can offer 5, 6 or 7 VMs. The
algorithm progressively computes the AR of every node, from
leaves to root. It then finds the lowest subtree that can offer
N +N ′ VMs, and makes allocation through backtracking.

The algorithm in [30] finds a VCE within O(|V | log |V |)
time. Algorithm 2 calls FindFeasibleV CE for at most N
times, hence it has time complexity O(N · |V | log |V |).

Algorithm 2 does not guarantee optimality. In fact, we can
construct simple examples for which it fails to find an SVCE,
yet one with the optimal objective can be found by our optimal
algorithm. Due to page limit, we omit the examples here.

However, as shown in Section 6, this heuristic algorithm
has similar performance to the per-request optimal solution
proposed in Section 4 when working in the online manner, but
is several orders more time-efficient. Therefore it is practically
important for providing fast response to tenants in the cloud.

6. PERFORMANCE EVALUATION

A. Baseline Algorithm

Shadow-based solution (SBS) is a well-known failover pro-
visioning solution for VM management [5]. In SBS, each
primary VM is protected by a dedicated backup VM (called
shadow). Different primary VMs do not share any com-
mon backup VM. To employ SBS for VCs, both VMs and
bandwidth need to be shadowed. We designed a heuristic
bandwidth-aware algorithm for SBS as our baseline algorithm.
It works as follows: given a request J = 〈N,B〉, the algorithm
seeks to find one primary VCE, as well as one shadow VCE,
on two disjoint sets of PMs respectively. When making the
primary VCE, the algorithm seeks to minimize the PMs used,
using a modified algorithm as in [25], therefore leaving more
room for the shadow. A request is accepted only when the
network accommodates both the primary VCE and the shadow.

We compared our proposed algorithms (OPT for the op-
timal algorithm and HEU for the heuristic algorithm) to this
baseline algorithm (SBS) to show how resources are conserved
to serve more requests by our optimization algorithms.

B. Evaluation Metrics

• Acceptance ratio is the number of fulfilled requests over
total requests, which directly reflects an algorithm’s ca-
pability in serving as many requests as possible.

• Average VM consumption ratio is defined as the average
ratio of actual VM slot consumption over the requested
VMs, namely RJ = (

∑
h Cs(h))/N , for each request.

Note that this only counts those requests accepted by all
three algorithms, in order to make fair comparison.

• Average running time reflects how much time an al-
gorithm spends in average to determine a solution (or
rejection) of each incoming request.

C. Experiment Settings

We developed a C++-based simulator to evaluate our proposed
algorithms. The substrate was simulated as a 4-layer 8-ary tree,
including the PMs. Each PM has 5 VM slots, and 8 PMs are
connected to a Top-of-Rack (ToR) switch each via a 1Gbps
link. 8 ToR switches are connected to one aggregation switch,
and 8 aggregation switches to the core, both via 10Gbps links.

We conducted experiments in two scenarios: the static
scenario and the dynamic scenario. In the static scenario, we
used the same network information and the same tenant request
in each experiment; hence no resource was reserved after the
acceptance of a request. To simulate realistic network states,
we randomly generated load on PMs and links. Specifically,
given a load factor α, we randomly occupied a fraction of
the VM slots on each PM and bandwidth on each link,
according to a normal distribution with mean of α and standard
deviation of min{α, 1.0 − α}. We then randomly generated
1000 tenant requests each requesting 15 VMs and 200Mbps
per-VM bandwidth on average with a normal distribution, and
tested each of them on the network with random load.

In the dynamic scenario, we generated randomly arriving
tenant requests, and embedded them in the initially unoccupied
network in an online manner. In each experiment 1000 tenant
requests were generated, which arrive in a Poisson process with
mean arrival interval of 15 and mean lifetime of 2000. Each
request asks for 15 VMs and 300Mbps per-VM bandwidth on
average, generated with a normal distribution. Resources were
reserved after the acceptance of a request, hence existing VCs
in the system would have impact on the embedding of future
incoming VCs. Each experiment was repeated for 20 times in
the same setting, and the results were averaged over all runs.

In both scenarios, we varied one system parameter in
each series of experiments, while keeping other parameters
as default. Experiments were run on a Ubuntu Linux PC with
Quad-Core 3.4GHz CPU and 16GB memory.

D. Evaluation Results
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Fig. 3: Static experiment with varying network load.

1) Static Experiments: Fig. 3 shows the acceptance ratio
and the VM consumption ratio with increasing network load
(overall bandwidth consumption is similar to Fig. 3(b) and is
not shown due to page limit). We observed that the OPT algo-
rithm outperforms both HEU and SBS in terms of both number
of requests accepted and the per-request VM consumption
ratio, due to its optimality. On the other hand, Fig. 3(a) shows
that the HEU algorithm performs less preferably than the SBS
baseline in terms of acceptance ratio, when the network is
loaded. Further analysis reveals that HEU commonly requires
more bandwidth from upper layer links, which are heavily
congested by the random load, hence HEU’s acceptance ratio
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is affected. However, as can be observed in Fig. 3(b), HEU
consumes much less VMs than SBS per accepted request.
Due to this, it is more likely for HEU to receive better
performance when employed as an online scheduler, due to
its capability in conserving cloud resources. As will be shown
next, HEU indeed outperforms SBS greatly in the dynamic
experiments. SBS always consumes 2× the VMs requested,
as it provisions an entire duplicate of the primary VMs. Per-
request VM consumption increases slightly with the increasing
load, due to that it is harder to find a survivable embedding
with few backup VMs when the network is short of bandwidth.

5 7 9 11 13 15
Average # requested VMs

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

A
cc

e
p
ta

n
ce

 r
a
ti

o

OPT HEU SBS

(a) Acceptance ratio

5 7 9 11 13 15
Average # requested VMs

1 

10 

100 

1000 

1e+4 

1e+5 

1e+6 

1e+7 

A
v
e
ra

g
e
 r

u
n
n
in

g
 t

im
e
 (

m
s)

OPT HEU SBS

(b) Average running time (log scale)
Fig. 4: Dynamic experiment with varying VMs per request

2) Dynamic Experiments: Fig. 4 shows the experiment
results with varying average number of requested VMs per
tenant request. OPT obviously achieves the best acceptance
ratio in all scenarios, while HEU’s acceptance ratio is only
slightly lower than OPT. Both algorithms have much higher
acceptance ratio compared to the SBS baseline, due to their
capability to conserve VM (and bandwidth) resources per
tenant request. Meanwhile, HEU has much shorter running
time than OPT in all cases due to its low time complexity,
and is only a little worse than SBS in most scenarios. As
each tenant asking for more VMs, acceptance ratio drops while
running time increases. This is due to that the running time of
all algorithms are related to the per-tenant request size N .
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Fig. 5: Dynamic experiment with varying per-VM bandwidth

Fig. 5 shows the experiment results with varying aver-
age per-VM bandwidth. The acceptance ratio results show
similar pattern as in Fig. 4, where OPT performs the best,
HEU performs slightly worse, and SBS performs much worse
compared to the former two. Acceptance ratio drops as per-
VM bandwidth increases. As for running time, clearly HEU
and SBS are both much better than OPT due to their low
complexity. Unlike Fig. 4, running time drops as per-VM
bandwidth increases. It has two reasons. First, the worst-case
time complexity of each algorithm is not related to the per-VM
bandwidth. Second, as per-VM bandwidth increases, the search
spaces decrease due to more consumed network resources.

In the last set of experiments, we varied the network size.
Each topology is a 4-level k-ary tree, which has k3 PMs, and
k2 + k1 + 1 switches. We varied k from 5 to 10. With a
larger network size (and thus more VMs and bandwidth), the
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Fig. 6: Dynamic experiment with varying network size

acceptance ratio of all algorithms increases in Fig. 6(a). OPT
and HEU both outperform SBS due to resource conservation.
The running time of all algorithms increase with the tree ary
number in Fig. 6(b). As the network itself grows linearly in the
logarithmic scale, all algorithms show linear or nearly linear
running time growth.

We summarize our findings as follows:

1) OPT guarantees per-request optimality, and has the best
performance in both static and dynamic scenarios; HEU
shows low acceptance ratio in the static case, but has
much higher acceptance ratio in the dynamic case due to
resource conservation; SBS consumes too much resources
and hence performs the worst in the dynamic case.

2) Compared to OPT, HEU has much better time efficiency,
which is a great advantage in practice; however, OPT
is still important when 1) tenant requests are small in
general, 2) cloud resources are very scarce, or 3) future
researches along the same line need to compare with a
theoretically (per-request) optimal solution.

7. DISCUSSSIONS

Resource optimization: Our current solutions focus on min-
imizing the number of backup VMs. However, they can be
extended to other objectives, such as minimization of total
bandwidth. Specifically, instead of the minimum number of
VMs, the minimum bandwidth to achieve a specific 〈n0, n1〉
pair is computed for each node. The aggregation process
incorporates the bandwidth consumed both in lower levels and
in the current level. We omit more details due to page limit.

Simultaneous PM failures: Our proposed algorithms protect
from any single PM failure in the substrate. They can be
extended to cover multiple simultaneous PM failures, at the
cost of exponentially increased time complexity regarding the
number of failures to be covered. Specifically, the extension
involves adding κ− 1 dimensions into the dynamic program-
ming, where κ is the number of covered simultaneous failures.
As our future work, more efficient algorithms for covering
multiple simultaneous PM failures are to be developed.

Data center topologies: As aforementioned, our solutions
can be applied to generic tree-like topologies with simple
abstractions. To support our argument, an example is shown
for the widely adopted FatTree topology [1] in Fig. 7. A 4-ary
FatTree topology is shown on the top, which is then abstracted
as the virtual tree topology on the bottom. Switches or links
connected to the same set of lower layer nodes are aggregated
into a single abstract switch or link; link capacities are also ag-
gregated. As the majority of data center traffic consists of small
flows, we can assume arbitrary splitting of traffic between
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Fig. 7: Tree abstraction (bottom) of 4-ary FatTree (top).

different VM pairs; hence any bandwidth allocation feasible
on the aggregated topology can be successfully configured on
the original topology as well. Other topologies feasible for
adopting such abstraction include VL2 [11] and other multi-
rooted tree-based topologies. Survivable VCE for more general
data center topologies is among our future directions.

8. CONCLUSIONS

In this paper, we studied survivable VC embedding with hose
model bandwidth guarantee. We formally defined the problem
of minimizing VM consumption for providing survivability
guarantee. To solve the problem, we proposed a novel dy-
namic programming-based algorithm, with worst-case time
complexity polynomial in the network size and the number
of requested VMs. We proved the optimality of our algorithm
and analyzed its time complexity. We also proposed an efficient
heuristic algorithm, which is several orders faster than the
optimal algorithm. Simulation results show that both proposed
algorithms can achieve much higher acceptance ratio compared
to the baseline solution in the online scenario, and our heuristic
algorithm can achieve similar performance as the optimal with
much faster computational speed.
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