Infiltrating the Sky: Data Delay and Overflow Attacks in Earth Observation Constellations

Xiaojian Wang¹, **Ruozhou Yu**¹, Dejun Yang², Guoliang Xue³

¹ North Carolina State University

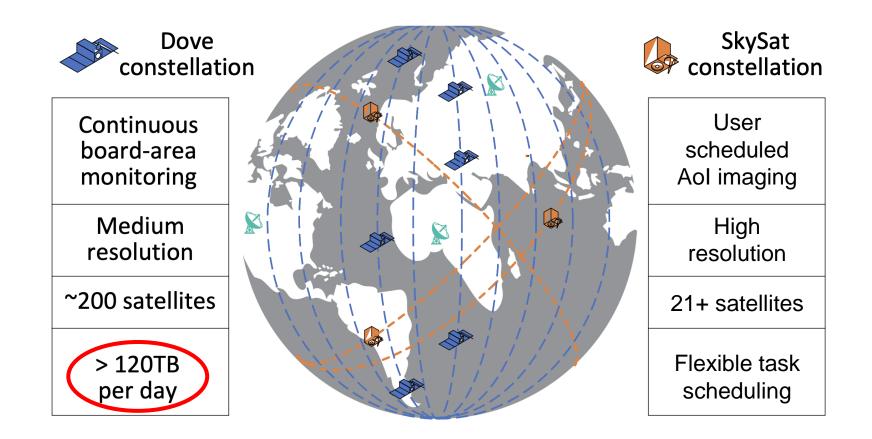
² Colorado School of Mines

³Arizona State University

Low Earth Orbit Earth Observation Constellation

- Low Earth Orbit (LEO) Satellite
 - Near Earth, altitudes < 2000km</p>
- □ Earth Observation (EO) Satellite
 - Monitoring Earth's surface
- LEO EO Constellation

Enabling continuous imaging of the entire Earth's surface


Applications

Agriculture, forestry, urban planning, and disaster management

Ref:https://earthobservatory.nasa.gov/blogs/earthmatters/2024/09/17/september-puzzler-10/

Examples of EO constellations

EO constellations operated by Planet Labs

New Attack Surface

Satellite downlink bottleneck

- Limited number and location of ground stations
- Small transmission windows
- Limited transmission bandwidth
- Constellations collaboration and competition
 - Share limited downlink resources
- Opportunity for attack
 - Users can schedule high-priority imaging and downlinking tasks at dedicated times and locations, causing intentional downlink competition with low-priority constellation

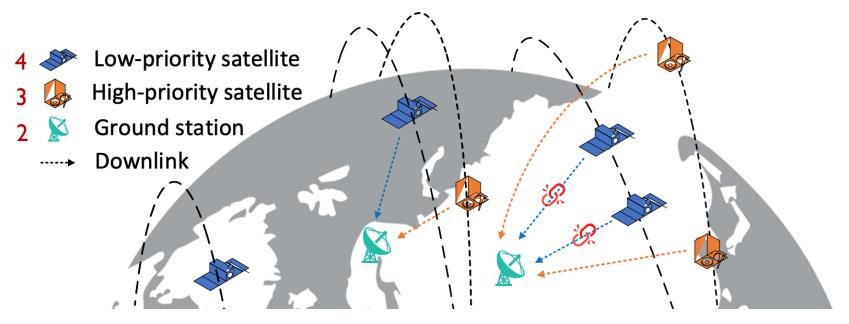
Exploiting downlink competition to disrupt a low-priority satellite's data downlink

Motivation and Main Idea

Data delay attack

- delaying the downlink of target data
- **Data overflow attack**
 - ✤ dropping target data

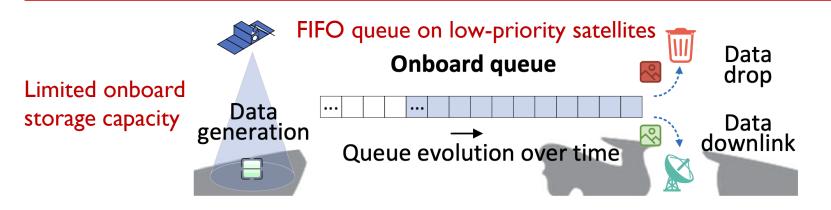
Motivation Prevent downlink and analysis of sensitive information


- warfare strategies
- ✤ illegal operations

Strategy An attacker can *inject high-priority requests* to preempt low-priority data downlink windows.

By utilizing predictable satellite dynamics, an attacker can intelligently target critical data from low-priority satellites.

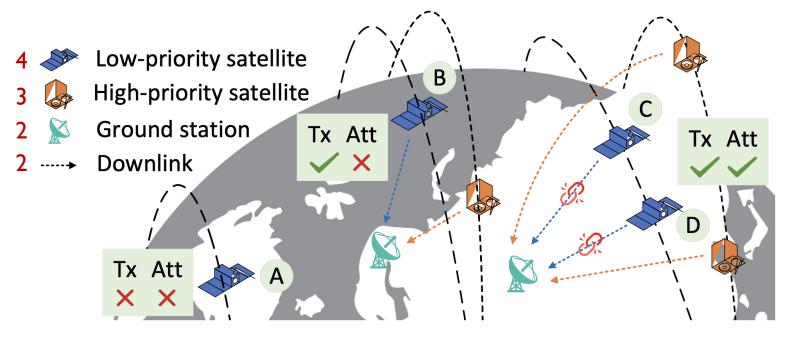
EO Constellation In Operation


EO Constellations in Low Earth Orbit

Assumptions of attack scenario:

- High-priority satellites can preempt low-priority ones during shared downlinks.
- Attacker (high-priority users) can **schedule** tasks for specific location and time.
- Attacker has knowledge of low-priority queue policy & (possibly noisy) dynamics.

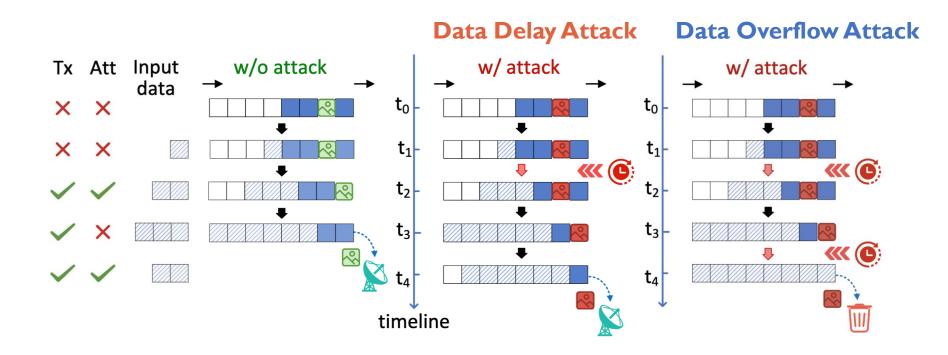
Threat Model and Attack Goals


- Attack target: one or more data units s^{*} on low-priority satellite.
 - ✤ A series of images, video fragments, etc.
- Attack goal: delay or drop the target data before it downlinks to the ground.
- Attacker ability: utilize legitimate task scheduling on high-priority satellites with shared ground communications.

Attacker strategy \mathcal{Y}_{s^*}

- A set of attackable time slots for which the attacker schedules highpriority tasks
- Attacker cost $\rho_{s^*}(t)$
 - Depends on number of attacked slots, and high-priority service pricing
- Attacker objective
 - Successfully delay / drop target data
 - Minimize attack cost or time frame

Transmissible and Attackable Windows


Transmissible and attackable time slot

Tx - transmissible indicator Att - at

Att - attackable indicator

Data Delay Attack & Data Overflow Attack

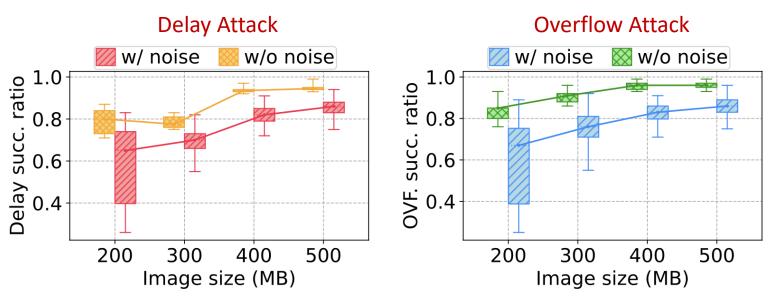
Remark: The attacks can start **long before the target data is generated** on the target satellite, under mild queue conditions.

Example: Planned or long-term scheduling of high-priority services by a nation-state attacker to elicit and keep satellites queues in desired states for rapid launching of targeted attacks.

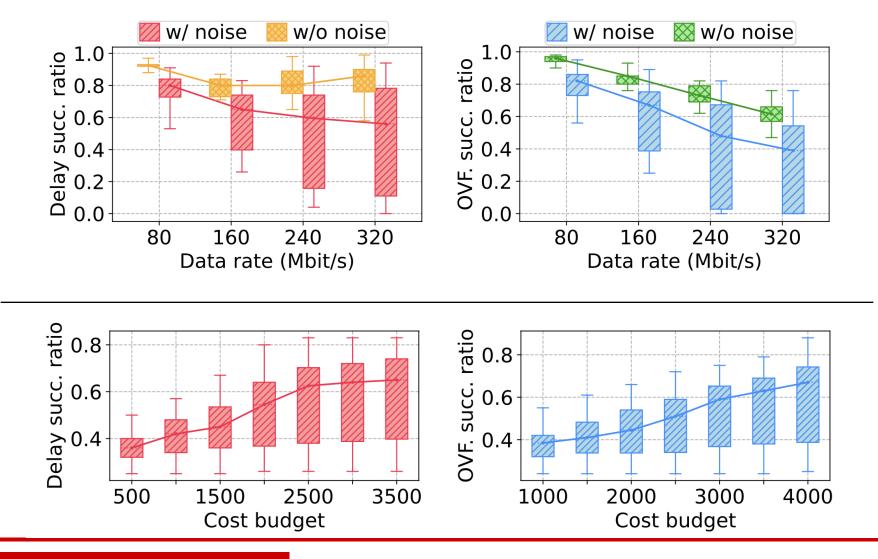
Attack Algorithms

Given knowledge of queue dynamics and orbital dynamics

Algorithm 1: Data Delay Attack **Input:** Target data Θ , target downlink time $t^*(\tilde{\tau})$, EO constellations state $\{(\mathcal{X}_{s^*}, \mathcal{A}_{s^*}, \mathcal{Q}_{s^*}(t_0, \emptyset), \}$ $\mathcal{Q}_{s^*}(\tau, t_0, \emptyset), c_{s^*}, \tau \in \Theta$, attack cost set ρ_{s^*} **Output:** Attack strategy \mathcal{Y}_{s^*} 1 $\mathcal{Y}_{s^*} \leftarrow \emptyset$; 2 for $\tau \in \Theta$ do $t_e(\tau, \mathcal{Y}_{s^*}) \leftarrow \min_t \{ t | Q_{s^*}(\tau, t, \mathcal{Y}_{s^*}) = 0 \};$ 3 $t_{lb}(\tau, \mathcal{Y}_{s^*}) \leftarrow \max\{t_0, \max_t\{t|Q_{s^*}(t, \mathcal{Y}_{s^*}) =$ 4 c_{s^*} and $t_0 \leq t < t_e(\tau)$ }; if data unit τ is dropped then return \mathcal{Y}_{s^*} ; 5 while $t_e(\tau, \mathcal{Y}_{s^*}) - t_e(\tau, \emptyset) \leq t^*(\tilde{\tau}) - t_e(\tilde{\tau}, \emptyset)$ do 6 $T_{\tau} \leftarrow \{t | t_{lb}(\tau, \mathcal{Y}_{s^*}) < t \leq t_e(\tau, \mathcal{Y}_{s^*}) \text{ and } t \in$ 7 \mathcal{A}_{s^*} and $t \notin \mathcal{Y}_{s^*}$; if $\hat{T}_{\tau} = \emptyset$ then return Attack Fail; 8 $\hat{t} \leftarrow \arg\min_{t \in \hat{T}_{-}} \{ \rho_{s^*}(t) \};$ 9 10 $\mathcal{Y}_{s^*} \leftarrow \mathcal{Y}_{s^*} \cup \{\hat{t}\};$ $t_e(\tau, \mathcal{Y}_{s^*}) \leftarrow \min_t \{ t | Q_{s^*}(\tau, t, \mathcal{Y}_{s^*}) = 0 \};$ 11 if $t_e(\tau, \mathcal{Y}_{s^*}) = \infty$ (τ is dropped) then 12 **return** Attack strategy \mathcal{Y}_{s^*} ; 13 $t_{lb}(\tau, \mathcal{Y}_{s^*}) \leftarrow \max\{t_0, \max_t\{t|Q_{s^*}(t, \mathcal{Y}_{s^*}) =$ 14 c_{s^*} and $t_0 \leq t < t_e(\tau, \mathcal{Y}_{s^*})$ }; 15 **return** Attack strategy \mathcal{Y}_{s^*} ;


```
Algorithm 2: Data Overflow Attack
     Input: Target data \Theta, EO constellations state {(\mathcal{X}_{s^*},
                   \mathcal{A}_{s^*}, \mathcal{Q}_{s^*}(t_0, \emptyset), \mathcal{Q}_{s^*}(\tau, t_0, \emptyset), c_{s^*}), \tau \in \Theta\}
     Output: Attack strategy \mathcal{Y}_{s^*}
 1 \mathcal{Y}_{s^*} \leftarrow \emptyset;
 2 for \tau \in \Theta do
           t_e(\tau, \mathcal{Y}_{s^*}) \leftarrow \min_t \{ t | Q_{s^*}(\tau, t, \mathcal{Y}_{s^*}) = 0 \};
 3
           t_{lb}(\tau, \emptyset) \leftarrow \max\{t_0, \max_t\{Q_{s^*}(t_0) = c_{s^*} \text{ and } t_0 \leq t_0\}
 4
             t < t_e(\tau, \mathcal{Y}_{s^*})};
           Sort set \{t | t \geq t_e(\tau, \mathcal{Y}_{s^*}) \text{ and } t \in \mathcal{A}_{s^*}\} in
 5
              ascending order as T_n;
           Sort set \{t | t_0 \leq t < t_e(\tau, \mathcal{Y}_{s^*}) \text{ and } t \in \mathcal{A}_{s^*}\} in
 6
              descending order as T_p;
            t_n \leftarrow \mathsf{T}_n.pop(), t_p \leftarrow \mathsf{T}_p.pop();
 7
           while \tau is not be dropped do
 8
                  if t_n \leq t_e(\tau, \mathcal{Y}_{s^*}) then
 9
10
                         \mathcal{Y}_{s^*} \leftarrow \mathcal{Y}_{s^*} \cup \{t_n\};
                         t_e(\tau, \mathcal{Y}_{s^*}) \leftarrow \min_t \{ t | Q_{s^*}(\tau, t, \mathcal{Y}_{s^*}) = 0 \};
11
                        t_n \leftarrow \mathsf{T}_n.pop();
12
                   else if T_p \neq \emptyset and t_p > t_{lb}(\tau, \mathcal{Y}_{s^*}) then
13
                         \mathcal{Y}_{s^*} \leftarrow \mathcal{Y}_{s^*} \cup \{t_p\};
14
                         t_e(\tau, \mathcal{Y}_{s^*}) \leftarrow \min_t \{ t | Q_{s^*}(\tau, t, \mathcal{Y}_{s^*}) = 0 \};
15
                         t_{lb}(\tau, \mathcal{Y}_{s^*}) \leftarrow \max\{t_0, \max_t\{t|Q_{s^*}(t, \mathcal{Y}_{s^*})\}
16
                           = c_{s^*} and t_0 \leq t < t_e(\tau)};
                         t_p \leftarrow \mathsf{T}_p.pop();
17
                   else return Attack Fail;
18
19 return Attack strategy \mathcal{Y}_{s^*}.
```

- Feasible data delay attack with minimum cost (Algorithm I)
- Feasible data overflow attack with minimum attack period (Algorithm 2) (Both proofs in extended arXiv version)


Simulation of the Two Attacks

- PlanetLab Dove (low-priority, 118 satellites) and SkySat (high-priority, 21-50 satellites)
 - I2 shared ground stations, each with 4 antennas
- Simulation parameters: image sizes & rate, onboard storage, downlink rate, (synthetic) costs
- **Noisy knowledge:** randomly perturb image size, data rate and/or initial queue size

Selected results

More Simulation Results

Countermeasures and Other Thoughts

- Q: Can enlarging on-board storage or downlink stop the attacks?
 - Storage: possibly for overflow, not for delay.
 - ♦ <u>Downlink capacity</u>: yes, but costly \rightarrow race between application & capacity.
- Q: Can different queue scheduling policies help?
 - Deterministic (like LIFO): not really; attacker can adjust.
 - **Random on low-priority:** makes it harder for attacker to profile the policy.
 - Random between low- and high-priority: can help make attack less successful, but degrades high-priority QoS.
- Q: Can user access control help?
 - ✓ Detect and suspend abnormal user activities on high-priority services.
 - \checkmark Utilization-based resource / service pricing \rightarrow increase attacker cost.
 - \bigstar More complex security games between attacker and EO operator $\textcircled{\odot}$

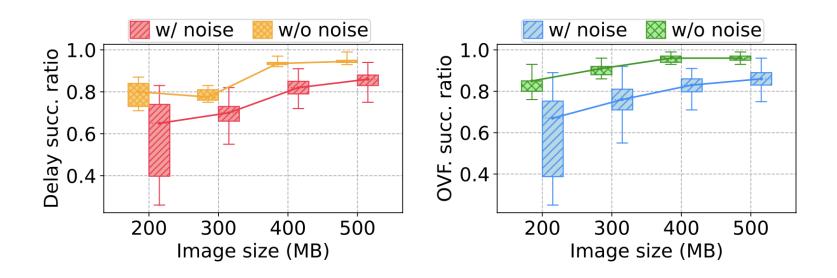
Thank you very much! Q&A?

Data Delay Attack

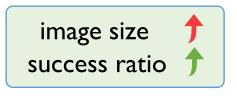
Algorithm 1: Data Delay Attack **Input:** Target data Θ , target downlink time $t^*(\tilde{\tau})$, EO constellations state $\{(\mathcal{X}_{s^*}, \mathcal{A}_{s^*}, \mathcal{Q}_{s^*}(t_0, \emptyset), \}$ $\mathcal{Q}_{s^*}(\tau, t_0, \emptyset), c_{s^*}), \tau \in \Theta$, attack cost set ρ_{s^*} **Output:** Attack strategy \mathcal{Y}_{s^*} 1 $\mathcal{Y}_{s^*} \leftarrow \emptyset;$ _____ initialize the attack strategy 2 for $\tau \in \Theta$ do $t_e(\tau, \mathcal{Y}_{s^*}) \leftarrow \min_t \{t | Q_{s^*}(\tau, t, \mathcal{Y}_{s^*}) = 0\}; \longrightarrow \text{expected downlink time}$ 3 $t_{lb}(\tau, \mathcal{Y}_{s^*}) \leftarrow \max\{t_0, \max_t\{t|Q_{s^*}(t, \mathcal{Y}_{s^*}) =$ 4 c_{s^*} and $t_0 < t < t_e(\tau)$ }: last queue full time without any attack if data unit τ is dropped then return \mathcal{Y}_{s^*} : 5 while $t_e(\tau, \mathcal{Y}_{s^*}) - t_e(\tau, \emptyset) \leq t^*(\tilde{\tau}) - t_e(\tilde{\tau}, \emptyset)$ do \longrightarrow τ needs more attack time slots to delay longer 6 $\hat{T}_{\tau} \leftarrow \{t | t_{lb}(\tau, \mathcal{Y}_{s^*}) < t \leq t_e(\tau, \mathcal{Y}_{s^*}) \text{ and } t \in$ 7 _____ all the attackable time slots that potentially have \mathcal{A}_{s^*} and $t \notin \mathcal{Y}_{s^*}$; attack strength for τ if $\hat{T}_{\tau} = \emptyset$ then return Attack Fail; 8 $\hat{t} \leftarrow \arg\min_{t \in \hat{T}_{\tau}} \{ \rho_{s^*}(t) \};$ find the minimum cost attack strategy for τ 9 $\mathcal{Y}_{s^*} \leftarrow \mathcal{Y}_{s^*} \cup \{\tilde{t}\};$ add t' to the attack strategy 10 $t_e(\tau, \mathcal{Y}_{s^*}) \leftarrow \min_t \{ t | Q_{s^*}(\tau, t, \mathcal{Y}_{s^*}) = 0 \};$ 11 update the expected downlink time if $t_e(\tau, \mathcal{Y}_{s^*}) = \infty$ (τ is dropped) then 12 **return** Attack strategy \mathcal{Y}_{s^*} ; 13 $t_{lb}(\tau, \mathcal{Y}_{s^*}) \leftarrow \max\{t_0, \max_t\{t|Q_{s^*}(t, \mathcal{Y}_{s^*}) =$ 14 update last queue full time c_{s^*} and $t_0 \leq t < t_e(\tau, \mathcal{Y}_{s^*})\}\};$

15 return Attack strategy \mathcal{Y}_{s^*} ;

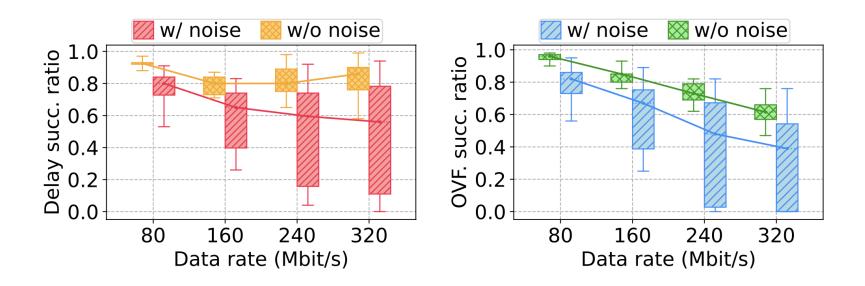
Data Overflow Attack

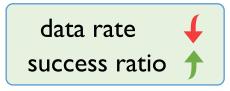

Algorithm 2: Data Overflow Attack **Input:** Target data Θ , EO constellations state { $(\mathcal{X}_{s^*},$ $\mathcal{A}_{s^*}, \mathcal{Q}_{s^*}(t_0, \emptyset), \mathcal{Q}_{s^*}(\tau, t_0, \emptyset), c_{s^*}), \tau \in \Theta\}$ **Output:** Attack strategy \mathcal{Y}_{s^*} 1 $\mathcal{Y}_{s^*} \leftarrow \emptyset$; Initialize the attack strategy 2 for $\tau \in \Theta$ do $t_e(\tau, \mathcal{Y}_{s^*}) \leftarrow \min_t \{ t | Q_{s^*}(\tau, t, \mathcal{Y}_{s^*}) = 0 \};$ expected downlink time 3 $t_{lb}(\tau, \emptyset) \leftarrow \max\{t_0, \max_t\{Q_{s^*}(t_0) = c_{s^*} \text{ and } t_0 \leq t_0\}$ 4 last queue full time without any attack $t < t_e(\tau, \mathcal{Y}_{s^*})\}\};$ Sort set $\{t | t \ge t_e(\tau, \mathcal{Y}_{s^*}) \text{ and } t \in \mathcal{A}_{s^*}\}$ in T_n - attackable time slots at and after the initial 5 ascending order as T_n ; image downlink time (ascending) Sort set $\{t | t_0 \leq t < t_e(\tau, \mathcal{Y}_{s^*}) \text{ and } t \in \mathcal{A}_{s^*}\}$ in 6 T_{p} - attackable time slots before the initial image descending order as T_p ; downlink (descending) $t_n \leftarrow \mathsf{T}_n.pop(), t_p \leftarrow \mathsf{T}_p.pop();$ 7 while τ is not be dropped do 8 if $t_n \leq t_e(\tau, \mathcal{Y}_{s^*})$ then 9 $\mathcal{Y}_{s^*} \leftarrow \mathcal{Y}_{s^*} \cup \{t_n\};$ 10 attack the time slot t_n in T_n and keep the target $t_e(\tau, \mathcal{Y}_{s^*}) \leftarrow \min_t \{ t | Q_{s^*}(\tau, t, \mathcal{Y}_{s^*}) = 0 \};$ 11 data onboard and at the top of the queue $t_n \leftarrow \mathsf{T}_n.pop();$ 12 else if $T_p \neq \emptyset$ and $t_p > t_{lb}(\tau, \mathcal{Y}_{s^*})$ then – 13 next attackable time slot in T_n cannot contribute to $\mathcal{Y}_{s^*} \leftarrow \mathcal{Y}_{s^*} \cup \{t_n\};$ 14 delaying the downlink time of the target data $t_e(\tau, \mathcal{Y}_{s^*}) \leftarrow \min_t \{ t | Q_{s^*}(\tau, t, \mathcal{Y}_{s^*}) = 0 \};$ 15 attack the time slot t_{D} in T_{D} to delay the downlink $t_{lb}(\tau, \mathcal{Y}_{s^*}) \leftarrow \max\{t_0, \max_t\{t|Q_{s^*}(t, \mathcal{Y}_{s^*})\}$ 16 time of τ to make sure τ remains onboard $= c_{s^*}$ and $t_0 \leq t < t_e(\tau)$ }; $t_p \leftarrow \mathsf{T}_p.pop();$ 17 If T_{D} is empty or new data overflow happens due else return Attack Fail; 18 to the attack on t_{D} , then the attack fails 19 return Attack strategy \mathcal{Y}_{s^*} .

Evaluation Settings

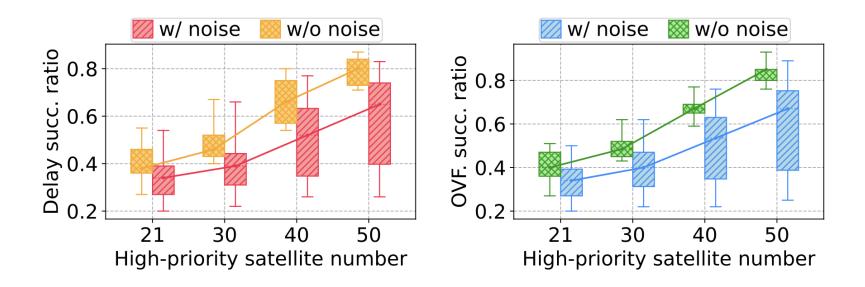

Trace-driven simulation

- Target satellite and data
 - Real-world metadata of the Planet Labs Dove satellite image data
 - > Target satellite 10 Dove satellites/118 satellites
 - Target data sampled 1000 images (100 images from each satellite)
 - Image size: 200MB [200MB-500MB], 4 images as target data
 - > Onboard storage: 2000GB; Initial queue size: 500 images
- Downlink resource
 - I2 ground stations each with 4 antennas
 - Average downlink rate: 160 Mbit/s [80Mbit/s 320Mbit/s]
- ✤ Attacker's resource
 - > Orbital information: real-world orbit Two Line Elements (TLEs) information
 - > 50 high-priority SkySat satellites [21-50]
 - Cost budget: 500-4000
- ✤ Gaussian noise
 - Image size and data rate [0-0.4 standard deviation] + vary 10 image in initial queue
- I0 seeds


Vary Image Size



Attacks with noise had a lower success ratio than those without.


Vary Data Rate

Vary High-priority Satellite Number

high-priority satellite number f success ratio

