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Abstract—Low Earth Orbit Satellite Networks (LSNs), as the
new generation of backbone networks, can provide low-latency
network connectivity anywhere on Earth. However, their dynamic
topology and unpredictable global usage patterns hinder reliable
communication, limiting their application in supporting real-time
applications that require predictable performance. Specifically,
the highly dynamic LSN may experience congestion and energy
depletion due to uneven user demands and the periodic movement
of satellites. In this paper, we design a Congestion and Energy-
Aware pricing and resource Reservation algorithm, CEAR, which
enables a LSN to reserve network resources for online arriving
real-time communication requests, ensuring reliable communica-
tion to support performance-critical applications such as disaster
monitoring and remote teleconferencing. To maintain the long-
term performance of the network, the LSN operator sets resource
prices for link bandwidth and satellite energy consumption across
the network. The resource prices act as a proxy between the
resource reservation decisions for each communication request
and the operator’s objective to maximize throughput and network
utility and/or to balance network-wide resource depletion. CEAR
is guided by online competitive algorithm design and achieves a
competitive social welfare. Extensive simulations using real-world
LSN topology show that CEAR achieves high social welfare while
maintaining low network-wide congestion and energy deficit.

Index Terms—Satellite network, routing, energy awareness,
online algorithm, pricing

I. INTRODUCTION

Low Earth Orbit (LEO) Satellite Networks (LSNs), also known
as broadband satellite networks, are drawing increasing atten-
tion from both academia and industry [1]. Many companies
such as SpaceX [2], Amazon [3], and OneWeb [4] are building
their own large-scale LEO satellite constellations to provide
low transmission delay, high communication bandwidth, and
global seamless Internet coverage to users [5]. It is foreseeable
that the demand for using LSNs will increase, where it serves
as the backbone network to support applications that were
previously difficult to support. However, LSNs are currently
unable to support reliable time-sensitive applications due to
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Fig. 1: Scenarios that require LSN to provide predictable performance.

their inherent high dynamics and limited available resources
(e.g., bandwidth and energy), which make them difficult to
provide guaranteed service with predictable performance [6].
End users of satellite backbone networks often require real-
time, reliable communication to support critical applications.
For instance, as shown in Fig. 1, Earth Observation (EO)
satellites collect Earth surface information and play a signif-
icant role in disaster monitoring and recovery, but ensuring
reliable and timely transmission of this data to the ground
remains a critical challenge [7], [8]. Similarly, remote tele-
conferencing [9] and live stream broadcasting [10] need stable
connections to meet user quality-of-experience goals.

To ensure predictable and reliable quality-of-service (QoS)
for certain critical or high-value applications, current network-
ing practice resorts to a combination of traffic prioritization
and resource reservation [11]. However, resource reservation
in LSNs differs significantly from traditional networks, re-
quiring special attention and tailored solutions to address
unique challenges such as dynamic topology, distinct resource
consumption patterns, and the need for long-term performance
optimization. These key aspects are outlined below:
Highly dynamic topology of LSNs. The network topology in
LSNs is highly dynamic, with satellites moving at high speeds
and frequently changing relative positions with other broad-
band satellites, EO satellites, and ground users. Combined with
fluctuating demand from both terrestrial and celestial sources,
this makes it challenging to provide theoretical guarantees on
resource reservation for performance-critical applications.
Unique resource constraints in LSNs. In addition to the
competition for limited bandwidth across user access links
and inter-satellite links, LSNs face the more critical and
unique challenge of managing energy constraints. Satellites are
powered by solar panels and batteries, which undergo periodic
charging and discharging cycles dictated by orbital dynamics.
In managing energy consumption, it is essential to consider not
only the energy used by a satellite to handle requests at a given
moment but also the long-term impact of that consumption on
the satellite’s energy availability. As satellites move and their
relative positions to the Sun change, solar energy may either
replenish the battery to recover previous consumption or be
wasted if the battery is already full. Due to the physical size
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and weight constraints of satellites, as well as the difficulty of
replacing or maintaining batteries once deployed, excessive
energy consumption can degrade batteries, shorten satellite
lifespans, and compromise overall network performance [12].
Addressing these distinct energy patterns is critical to ensuring
the long-term sustainability and efficiency of LSNs.
Long-term performance optimization in LSNs. Given the
high costs of LSN deployment and maintenance, LSN op-
erators must prioritize long-term performance to sustain the
LSN ecosystem. This involves managing resource allocation to
handle urgent and unpredictable requests, adapting to dynamic
topology changes, and maximizing social welfare1 to ensure
both user satisfaction and operational sustainability.

This paper aims to address the above challenges when serv-
ing prioritized users with resource-guaranteed communication
services. While existing solutions often fail to fully consider
congestion and energy consumption or rely on best-effort rout-
ing [13], [14], which is inadequate for real-time applications,
our approach aims to bridge these gaps. We consider a scenario
where prioritized traffic demands arrive over time and requests
guaranteed service from the LSN operator. To avoid abuse
of the prioritized service and to maximize social welfare,
the LSN operator sets up service prices that each user must
pay to enjoy the prioritized service. Our main contribution
is an algorithmic framework to set up service prices in a
way that reflects the available resources across a LSN, and
to serve (or deny) each user request based on the lowest total
price of dynamically scheduled resources that can fulfill the
request. The pricing and allocation framework serves the dual
purposes of (1) making sure resources are allocated to the
highest-value or most critical users as much as possible, and
(2) internally balancing congestion and energy consumption
across different satellites to achieve high long-term social
welfare and increase lifespan of the network. We develop novel
modeling techniques to tackle resource allocation challenges
in LSNs, including dynamic topology and unique energy
consumption patterns, and rigorously demonstrate through
competitive analysis that our framework achieves competitive
social welfare against the offline optimal algorithm. Extensive
and comprehensive simulations on real-world satellite network
topologies show that our algorithm outperforms state-of-the-
art methods in network social welfare while maintaining low
average congestion and energy deficit levels in the long run.

Our main contributions are summarized as follows:

• We model how a LSN can reserve dynamic resources to
support reliable real-time communication, by formulating
a joint request access control and resource reservation
problem that accounts for topology dynamics, link con-
gestion and satellite energy deficits.

• We design a novel online pricing and resource reservation
algorithmic framework, CEAR, which adaptively prices
resources based on satellite network dynamics and uti-

1Social welfare refers to the total benefit of the system, combining users’
satisfaction from accessing the network and operator profit from service.
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Fig. 2: LSN components and a satellite’s trajectory.

lization, and reserves resources adaptively while reacting
to link congestion and energy deficit.

• Based on the well-known competitive analysis frame-
work, we rigorously analyze and demonstrate that our
framework achieves competitive social welfare with care-
fully selected pricing parameters.

• Extensive simulations show that our algorithm can
achieve higher network social welfare while maintaining
a low average congestion and energy deficit level com-
pared to existing routing algorithms.

Organization. §II introduces background and related work.
§III presents the system model. § IV proposes CEAR frame-
work. §V provides the competitive analysis results. §VI shows
the evaluation results. §VII concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Low Earth Orbit Satellite Networks

According to different orbit altitude, the satellite can be
divided into three categories: Low Earth Orbit (LEO), Medium
Earth Orbit (MEO), and Geostationary Earth Orbit (GEO).
LEO satellites are located at an altitude of 500-2000km [15],
which is much closer to the Earth than MEO and GEO satel-
lites and have a shorter round-trip time. However, due to the
low altitude, the coverage area of LEO satellite is smaller, and
so to provide global coverage, requires a large constellations
of satellites forming a network. Due to the high velocity of
satellites at the low-Earth orbit, the network topology is highly
dynamic. Each satellite periodically transitions between being
exposed to sunlight and entering Earth’s umbra, where there
is no sunlight to serve as an energy source.

The currently widely employed LSN communication model
is bent-pipe communications, where each satellite acts as a
relay station and forwards data between the ground stations un-
der the satellite coverage area. With the development of Inter-
Satellite Link (ISL) technology, future satellites are expected
to also function as routers to forward data among themselves,
which could significantly enhance LSN’s capability to act as an
Internet backbone to provide low-latency network connectivity
anywhere on Earth. An example of LSN is shown in Fig. 2.

As shown in Fig. 1, there are two types of users who may
use the broadband satellite service: the ground users and the
space users. The ground users are the users who use the broad-
band satellite to access the Internet, for example, enabling web
access or hosting video conferences between remote locations
on Earth. Meanwhile, there are users in the space, such as
EO satellites that constantly generate Earth observing data,
and require sending those data either to other satellites for



processing or to the ground for analytics. For example, an EO
satellite monitoring the forest fire needs to transfer images to
the Earth immediately to assist in firefighting.

Due to the large number of LEO satellites, deploying a full
constellation incurs high manufacturing and launch costs. As
satellites typically operate for 10–15 years [15], maintaining
stable network performance over their lifespan is essential.
Since battery replacement is impossible in space, energy con-
sumption and battery life directly impact long-term usability,
making efficient energy management critical.

B. Routing in LSNs
Routing in satellite networks has been extensively studied [16],
[17], with approaches and methodologies proposed to address
various challenges such as dynamic topology changes, latency
constraints [18], link failure [19], and throughput optimiza-
tion [20]. However, they overlook the crucial considerations
of congestion and energy consumption, which are essential
for the LSN to support real-time applications. Yang et al.
discussed online allocation with replenishable budgets [21],
but it cannot fit the LSN’s solar panel-battery charging model,
where excess energy is discarded if the battery is full.

Some existing works have investigated congestion mini-
mization [13], [22], [23] or energy consumption minimiza-
tion [12], [14], [24] in satellite networks. However, these
approach require known traffic demands as input or consider
link-level statistics such as network buffers; they focus on
providing best-effort services without providing network per-
formance guarantee. Finally, there has been limited work that
investigates both network congestion and energy consumption
in satellite networks [25], [26]. For instance, ECARS [27]
considers multi-objective routing optimization among energy
consumption, congestion and delay, but does not provide any
guarantee on resource reservation or routing performance.
Energy Routing Penalty (ERA) and Energy Routing Pruning
(ERU) [28] revise ECARS by pruning and penalizing links
according to the battery charge threshold. However, these
works assume requests complete within a fixed period, focus-
ing only on packet-level routing without considering energy
consumption or congestion over the full request duration.

To summarize, we find that existing satellite network rout-
ing solutions either do not consider congestion and energy
consumption comprehensively, or offer only best-effort rout-
ing that cannot reliably support real-time applications with
stringent performance requirements. Further, we find that the
joint consideration of pricing and allocation for online arriving
communication demands is lacking in the existing literature.

III. SYSTEM MODEL

In this section, we introduce the system model of CEAR,
including the satellite network model, demand model, and
energy consumption model, which incorporates the unique
energy charging and discharging patterns of satellites.

A. Satellite Network Model
We model the LSN as a time-slotted directed graph G(T ) =
(V(T ), E(T )), where V(T ) is the set of broadband satellites
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Fig. 3: Satellite charge/discharge cycle. The cycle transitions between sunlight,
where solar panels harvest energy to power the satellite and store excess
energy in the battery, and Earth’s umbra, where solar energy is unavailable
and the battery discharges to sustain satellite operations.

and users at time T , and E(T ) is the set of communication
links available at time T . T = {1, 2, . . . } is the set of time
slots. Specifically, let S={s1, s2, . . . } be the set of broadband
satellites, and U(T )={u1, u2, . . . } be the set of users at time
T , which includes both ground users and space users. Thus,
we have V(T ) = S ∪U(T ). The links in E(T ) = {e1, e2, . . . }
include communication links among the satellites and between
the satellites and users, i.e., a link e ∈ E(T ) can be either
an ISL or a user-satellite link (USL). Our model captures
the dynamic nature of LSNs, where the network topology
changes over time slots, with the time slot length determining
the granularity of these variations.

Each link e ∈ E(T ) has a bandwidth capacity ce(T ), which
is the maximum amount of data that can be transmitted over
the link at time T . Each broadband satellite s ∈ S has a battery
capacity ϖs, representing the maximum energy it can store.

B. Demand Model
Let R={R1, . . . , Rz} be a set of online arriving data transfer
requests from users, and we define K ={1,. . ., z}. Without
loss of generality, we assume that requests in R are ordered
by their arrival times. Each request Ri ∈ R is defined as
a tuple (usi, u

d
i , δi, sti, edi, ρi), where usi is the source of the

request, udi is the destination of the request, δi≜(δi(T ))T∈T is
the data rate demand vector of the request, sti is the request
start time, edi is the request end time, and ρi is the user’s
valuation. Given a user’s request from source usi to destination
udi , the request spans from time sti to edi and is expected to be
satisfied within the valuation ρi. During this period, the user
requires the data rate in each time slot to meet the demand
specified by the data rate demand vector δi.

Upon receiving a data transfer request Ri, we assume an
all-or-nothing strategy: either route it via a set of paths that
guarantee sufficient resources to meet its demand, or reject it.
If a ground request is rejected, the ground user can use the
terrestrial network or other available satellite constellations for
communication. If a request from a space user is rejected, the
user can wait for a period before resubmitting the request.
Let T≜maxi∈K{edi−sti} be the maximum duration of all
requests. For a request Ri, let Pi(T ) be the set of paths from usi
to udi at time T in graph G(T ). We define κ(T, i)≜1sti≤T≤edi

to indicate if request Ri is active at time T , and τs(T, i) ≜
1sti<T to indicate if satellite s ∈ S is used by request Ri

before time T , where 1c is an indicator function that evaluates
to 1 if the condition c is true and 0 otherwise.

C. Energy Consumption Model
As shown in Fig. 3, a satellite’s energy sources include a
solar panel for harvesting energy in sunlight and a battery



for storage and power supply when in Earth’s umbra or when
solar panel energy is insufficient [29].

The communication subsystem in a LSN, which supports a
satellite in transmitting or receiving data, consumes a substan-
tial amount of the satellite’s energy [30]. We assume that the
actual energy consumption is the unit energy multiplied by the
link utilization. This model aligns with the power consumption
model for satellite communication systems [12] and is sup-
ported by empirical evidence indicating that network devices
often demonstrate a linear relationship between throughput and
power consumption [31], [32].

Since each satellite can have two types of links—ISLs and
USLs—we define different energy consumption models for
these links. Let me∈{ISL,USL} be the type of a link e. When
a satellite s is transmitting over link e for request Ri, we
denote its unit energy consumption as ωi,tx

me
, which denotes

the energy consumed when the communication subsystem is
at an active transmission state. Similarly, when s is receiving
from e for Ri, we denote its unit energy consumption as ωi,rx

me
.

Given a path Pi(T )∈Pi(T ) for request Ri at time T , the
satellite accessed by the user through the USL in the LSN
is referred to as the gateway of Pi(T ). We define the energy
consumption at time T for Ri on satellite s as: Ωs(T, i)≜

δi(T )xi(ω
i,tx
ISL + ωi,rx

ISL ), if s is not Pi(T )’s gateway,
δi(T )xi(ω

i,rx
USL+ω

i,tx
ISL ), if s is Pi(T )’s ingress,

δi(T )xi(ω
i,tx
USL+ω

i,rx
ISL ), if s is Pi(T )’s egress,

(1)

where xi∈{0, 1} is the indicator of whether or not to accept
request Ri. xi = 1 if request Ri is accepted and xi = 0
otherwise. Given Pi(T ), energy consumption at each hop
depends on satellite positions along the path. Non-gateway
satellites use ISL, while gateway satellites use both USL and
ISL, with energy use depending on ingress or egress roles.

Since the charging cycles of each satellite are periodic and
dependent on the satellite’s orbit and position, we need to
dynamically consider the generation, storage and consumption
of solar energy. Assume that the LSN serving a request Ri

has to consume the battery on satellite s due to unavailable
or insufficient solar panel input in some time slot T1. This
causes a deficit on the battery’s energy charge that can only
be replenished in some future time slot T2 when the satellite
harvests more solar energy than consumption. This means that
for all time slots between T1 and T2, the battery charge is
affected by serving request Ri at time T1. Note that a request
may have multiple such time slots during its duration that
cause deficits in the future. We thus define the battery deficit of
satellite s caused by request Ri’s active time slot Ta∈ [sti, edi]
by the end of a future time slot T ≥ Ta as: Ω̄s(Ta, T, i) ≜{

max{0,Ωs(Ta, i)− αs(T )}, if T = Ta,

max{0, Ω̄s(Ta, T − 1, i)− αs(T )}, if T > Ta.
(2)

For Ri that is active in Ta, it first impacts the battery deficit
of this time slot. This impact will either be compensated by
the solar energy in this time slot or will need to be offset by
the solar energy in subsequent time slots until the deficit is
fully compensated. Let α̂s(T ) be the total solar energy input
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Fig. 4: Bandwidth and energy resources in a three-hop path within LSN. The
bandwidth resource includes the bidirectional bandwidth of ISL and USL.
The energy resource of each broadband satellite comprises two parts: solar
energy from solar panels and battery energy from batteries.

for time slot T . The remaining solar energy of satellite s in
time slot T after satellite s has served/reserved all accepted
previous requests before and at time slot T is denoted by

αs(T ) ≜ max{0, α̂s(T )−
∑
i∈K

xi
∑

Ta∈[sti,edi]

Ω̄s(Ta, T − 1, i)}. (3)

The remaining solar energy of satellite s in a time slot is
the initial total solar energy input minus the energy used to
serve or reserve requests in that and prior time slots, with a
lower bound of 0. According to the battery deficit model, the
remaining battery energy at time slot T for a satellite s is:

bs(T ) ≜ ϖs−
∑
i∈K

xi
∑

Ta∈[sti,edi]

∑
s∈Pi(Ta)

τs(T, i)Ω̄s(Ta, T, i). (4)

Without loss of generality, we assume the battery is fully
charged and solar energy unused at the first time slot. It is
trivial to generalize to any starting state by subtracting an
initial deficit from α̂s(T ) in Eq. (3) and/or ϖs in Eq. (4).
To account for the overall impact on the battery charge by
serving a request Ri throughout its active duration, we define
the total deficit of request Ri for time T ≥ Ta as

Ω̄s(T, i) ≜
∑

Ta∈[sti,edi]
Ω̄s(Ta, T, i). (5)

From the above models, we can see how routing and
resource reservation in a LSN differs fundamentally from
online routing in the Internet or other types of networks. As
shown in Fig. 4, the two types of resources, communication
bandwidth and energy, have very different characteristics and
roles in serving a request. Compared to bandwidth which is
an instantaneous resource—meaning that it is automatically
recharged after being consumed—the received solar energy
can be accumulated up to the battery’s capacity, and used to
serve communication requests in subsequent time. When the
battery is full, using incoming solar energy to serve requests
does not consume any long-term resource. Meanwhile, when
the energy consumed by all accommodated requests exceed the
solar input in a time slot, the consumption on battery charge
then affects future time slots until the battery is recharged
by future solar input. This, in conjunction with the dynamic
topology of the LSN, makes resource planning more complex
and challenging than in other types of networks.

IV. LSN RESOURCE RESERVATION MECHANISM DESIGN

In this section, we first formulate the congestion- and energy-
aware pricing and resource reservation problem, aiming to
optimize the long-term performance of the entire LSN ecosys-
tem. In network economics, this is regarded as social welfare



maximization, which maximizes the total utility of all partic-
ipants in the ecosystem: both users’ and the LSN operator’s.
Maximizing social welfare is expected to increase an infras-
tructure’s long-term utility and thus the operator’s long-term
revenue from network economic literature [33]. We also note
that a competitive social welfare maximization algorithm can
be extended to a competitive revenue maximization algorithm
as in [34]. Next, we design an online algorithm based on
exponential price setting to instruct the routing and resource
reservation decisions.

A.Congestion& Energy-aware Pricing& Resource Reservation

We consider an online resource auction scenario from the per-
spective of a LSN operator. Users’ requests arrive over time,
each with a valuation ρi indicating the maximum price the
user is willing to pay for Ri to secure the necessary resource.
The LSN operator must make immediate decisions to accept or
reject requests without waiting for other requests to arrive. The
LSN operator conducts an online resource auction to allocate
bandwidth and energy resources, prioritizing requests with the
highest valuations. The outcome of the auction is denoted as
X={xi ∈ {0, 1} |Ri ∈R}, xi indicating whether request Ri

is accepted or rejected. The price each user needs to pay is
denoted byΠ≜{πi≥0 |Ri∈R}. The utility of a user for Ri

is defined as Θ(xi, πi)≜ (ρi−πi)xi. The utility of the LSN
operator is defined as ΘLSN(X,Π)≜

∑
i∈K πixi. The social

welfare is then the sum of utlilities of LSN operator and users:

S(X,Π)≜ΘLSN(X,Π)+
∑

i∈K
Θ(xi, πi)=

∑
i∈K

ρixi. (6)
Given online arriving requests R, the goal of LSN operator

is to maximize the social welfare by routing requests through
the network while keeping the network uncongested and main-
taining balanced battery deficits across satellites to enhance the
network’s sustainability and lifetime. Below, we first formulate
the offline LSN social welfare maximization problem where
we assume all upcoming user requests are known to the LSN
operator. The offline optimal solution is an upper bound on the
maximum social welfare that can be achieved by any online
algorithm, and serves as a strong baseline for us to compare
our online framework with.
Definition 1. Given a LSN {G(T ) |T ∈ T }, a set of requests
R, the congestion- and energy-aware pricing and resource
reservation problem can be formulated as:

max
X,Y

S(X,Π) (7)

s.t.
∑

p∈Pi(T )

yp(T, i) ≥ xi,∀i ∈ K,∀T ∈ [sti, edi]; (7a)

∑
i∈K

κ(T, i) · δi(T )
∑

p∈Pi(T )

yp(T, i) ≤ ce(T ),

∀T ∈ T ,∀e ∈ E(T ); (7b)
bs(T ) ≥ 0, ∀T ∈ T ,∀s ∈ S; (7c)

where Y ={yp(T, i) ∈ {0, 1} | i ∈ K, T ∈ T , p ∈ Pi(T )}, and
yp(T, i) indicates whether request Ri uses path p at time T .

Let ψi ≜ {(p, δi(T )) | yp(T, i) = 1, T ∈ T } be routing and
reservation plan for request Ri. Φ ≜ {ψi |Ri ∈ R} is the
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Fig. 5: An example of congestion- and energy-aware routing in LSN. The
green path is the one selected because it has sufficient energy and bandwidth
to support the request from the source to the destination. In contrast, the yellow
path lacks enough energy, and the red path is experiencing congestion.

outcome of routing and resource reservation with respect to
all requests.
Explanation: Our objective is to maximize the social wel-
fare by routing and reserving resources as in Eq. (7). Con-
straint (7a) ensures that any accepted request would have
enough resources reserved along paths throughout its active
duration. Constraint (7b) ensures that the traffic to be carried
on each link does not exceed the link capacity. Constraint (7c)
ensures that the battery of each satellite is not depleted.

B. Balancing Congestion and Energy Consumption via Expo-
nential Price Setting

Since the LSN operator does not know the future requests,
we design an online routing algorithm based on exponential
price setting to guide the routing decision. The main idea is
to have satellites acting as routers set higher prices for links
with high congestion, or for satellites that are anticipated to
have large battery deficits in the future. This encourages each
request to be served using links with lower congestion and
satellites with lower battery deficits. If a request’s valuation is
less than the total resource price of the best possible plan, it
indicates that accepting the request would lead to unacceptable
levels of congestion and/or battery deficit, adversely affecting
the long-term performance of the network. Therefore, such a
request should be rejected. Fig. 5 illustrates an example of
congestion- and energy-aware routing in the LSN.

To achieve this, we propose an adaptive resource pricing
method based on congestion and battery deficit levels. The
method is inspired by the multiplicative weight update (MWU)
framework [35], which prices resources exponentially to their
consumption. Similar ideas have previously been applied for
bandwidth pricing in Internet routing [36], however, the unique
characteristics of periodic solar energy input and replenishable
battery deficits require novel pricing schemes, as shown below.

Considering the two distinct types of resources (bandwidth
and battery), we first define correspondingly two utilization
metrics for each link e (for bandwidth) and each satellite s
(for battery) at time T before the i-th online request arrives:

λe(T, i) ≜

(∑
j<i

κ(T, j)xj
∑

e∈Pj(T )

δj(T )

)
/ce(T ),∀e∈E(T ); (8)

λs(T, i) ≜ (ϖs − bs(T ))/ϖs,∀s ∈ S. (9)
In the above, λe(T, i) measures the bandwidth utilization on

link e at time T with respect to constraint (7b), representing



the congestion level caused by the active requests at time T ,
and λs(T, i) measures the battery utilization of satellite s at
time T with respect to constraint (7c), which represents the
battery deficit level caused by all previous requests before time
T . Both λe(T, i) and λs(T, i) are in the range of [0, 1].

Our adaptive pricing strategy is based on above two utiliza-
tions. We define a congestion cost σe(T, i) for link e at time
T and an energy cost σs(T, i) for satellite s at time T upon
considering request Ri as follows:

σe(T, i) ≜ ce(T )(µ
λe(T,i)
1 − 1),∀e ∈ E(T ); (10)

σs(T, i) ≜ ϖs(µ
λs(T,i)
2 − 1),∀s ∈ S, (11)

where µ1 and µ2 are two constant parameters of the pricing
scheme that decides the conservativeness of pricing relative
to the utilization levels. A higher µ1 (resp. µ2) represents
a more conservative pricing scheme that sets higher prices
given the same utilization levels. In Sec. V, these parameters
will be used in the competitive analysis given some mild
assumptions on the online arriving requests, and best practices
for setting these parameters will be discussed in Sec. V-B.
Crucially, both cost functions are exponential with respect
to their corresponding utilization, such that the cost of a
resource grows exponentially with respect to its utilization,
aligned with the MWU framework. By setting prices as such,
our goal is to discourage utilization of highly congested or
deficit resources when serving each upcoming request, thereby
balancing resource consumption over the entire network.

Based on above cost functions, the total cost for serving the
upcoming request Ri with a LSN social welfare maximization
resource pricing and reservation plan is defined as the sum of
resource costs of all used link capacity and battery resources
across all time slots when the request is active:

σ(ψi) ≜
∑

T∈[sti,edi]

∑
e∈Pi(T )

σe(T, i)

ce(T )
δi(T ) + (12)∑

T∈T

∑
s∈Pi(T )

σs(T, i)

ϖs

∑
Ta∈[sti,edi]

Ω̄s(Ta, T, i).

C. Routing and Resource Reservation based on the Exponen-
tial Pricing Scheme
The LSN operator employs the above cost functions to decide
the price for serving each upcoming user request. For each
upcoming request, the pricing and resource reservation plan
with the minimum total cost is first calculated. If the total
cost is higher than the user’s valuation, the request is rejected
due to excessive congestion or energy deficit in the network.
Otherwise, the request is accepted and resources are reserved
based on the minimum-cost plan to provide reliable commu-
nication service to the user. The overall pricing and resource
reservation algorithm is shown in Algorithm 1.

At the very beginning, the LSN operator initializes the solar
energy input for all satellites and all time slots by assigning
αs(T ) to α̂s(T ). Upon a request Ri’s arrival, the LSN operator
initializes bandwidth utilization λe(T, i) and battery utilization
λs(T, i), then computes congestion cost of each link σe(T, i)
and energy cost of each satellite σs(T, i) based on the utiliza-
tions (lines 2–3). Then we calculate the energy consumption

Algorithm 1: Congestion and Energy-Aware Pricing
and Resource Reservation (CEAR) Algorithm
Input: Network {G(T ), T ∈ T }, arriving request Ri,

solar energy input {αs(T ) | s ∈ S, T ∈T }, unit
energy consumption {ωi,tx

me
, ωi,rx

me
|me∈{ISL,USL}}

Output: Decision (xi), resource reservation plan {ψi}
1 for ∀T ∈ T , ∀e ∈ E(T ) and ∀s ∈ S do
2 Initialize λe(T, i) and λs(T, i) according to

Eqs. (8) and (9);
3 Set σe(T, i) and σs(T, i) based on λe(T, i) and

λs(T, i) according to Eqs. (10) and (11);
4 Initialize energy consumption Ωs(T, i) of request

Ri according to Eq. (1);

5 According to Eq. (12), identify the min-price plan
ψ∗
i = {(P ∗

i (T ), δi(T )), T ∈ T } = argmin{σ(ψi)};
6 if ψ∗

i exist and total cost of plan σ(ψ∗
i ) ≤ ρi then

7 for ∀T ∈ [sti, edi], ∀e ∈ P ∗
i (T ) do

8 λe(T, i)← λe(T, i) +
δi(T )
ce(T ) ;

9 for ∀T ∈ T , ∀s ∈ P ∗
i (T ) do

10 for ∀Ta ∈ [sti, edi] do
11 if T < Ta then Ω̄s(Ta, T, i)← 0;
12 else if T = Ta then

Ω̄s(Ta, T, i)← max{0,Ωs(Ta, i)−αs(T )};
13 αs(T )← max{0, αs(T )− Ωs(Ta, i)};
14 else Ω̄s(Ta, T, i)←

max{0, Ω̄s(Ta, T−1, i)−αs(T )};
15 αs(T )←max{0, αs(T )−Ω̄s(Ta, T−1, i)};

16 λs(T, i)← λs(T, i) +
∑

Ta∈[sti,edi]
Ω̄s(Ta,T,i)

ϖs
;

17 return Accept (xi=1), ψ∗
i .

18 return Reject (xi = 0), ψi = {(∅, ∅), T ∈ T }.

Ωs(T, i) for each satellite regarding request Ri according to
Eq. (1) (line 4).

After the initialization, the LSN operator aggregates costs of
all resources over the entire active period of the request, and
then employs a shortest-path algorithm to find the minimum-
price routing and reservation plan ψ∗

i for the request (line 5).
If the minimum-price routing and reservation plan exists

and the cost of the plan is less than the request’s valuation
ρi, the LSN operator accepts this request and updates the
bandwidth and battery utilizations, as well as the remaining
solar energy and battery deficit of each satellite (lines 6–17).
Specifically, for each time slot when request Ri is active,
the network updates the link bandwidth utilization λe(T, i)
according to the request’s bandwidth consumption δi(T ) and
the link capacity ce(T ) (lines 7–8). For the energy update,
according to Eqs. (2) and (3), each time slot in which request
Ri is active affects the battery deficit and available solar
energy for all subsequent time slots. The battery utilization for
each affected time slot is then updated to reflect the change
caused by the new battery deficit (lines 9–16). Finally, the
LSN operator returns the acceptance decision and the routing
and reservation plan (line 17). If the request is rejected, the



LSN operator returns the rejection decision and an empty plan
without updating the bandwidth and battery utilizations of any
network resources (line 18).
Remark: The above pricing and resource reservation algo-
rithm relies on the pricing parameters µ1 and µ2, which
controls the conservativeness of the pricing and access control.
The optimal set of µ1 and µ2 that can achieve the best
social welfare, balanced congestion and low energy deficit is
dependent on the set of future requests and their arrival times.
In the next section, we first perform competitive analysis to
unveil how the request pattern determines the optimal µ1 and
µ2 that achieves a competitive social welfare for Algorithm 1.
Based on the analysis, we discuss practical approaches for
setting µ1 and µ2 in Sec. V-B and evaluate their impacts in
Sec. VI-B.

V. COMPETITIVE ANALYSIS AND PARAMETER SETTING

In this section, we analyze the proposed online pricing and re-
source reservation algorithm utilizing the competitive analysis
framework [36] and discuss how to set algorithm parameters
in practice.

A. Competitive Analysis

The competitive analysis framework is extensively employed
to evaluate online algorithms across diverse fields, including
but not limited to online scheduling [37], [38], online learn-
ing [39], and online auction [40]. The competitive ratio is
defined as the worst-case ratio between the social welfare of
the online algorithm and the social welfare of the optimal
offline algorithm that knows the entire sequence of future
arriving requests in advance [41].

The challenge in competitive analysis for performance in
LSNs lies in the dynamic nature of energy resources, specif-
ically the interplay between solar and battery energy, which
differs from traditional networks that only consider temporary
bandwidth consumption.

Without prior knowledge or restrictions on the incoming
request set, establishing meaningful bounds on the competitive
ratio becomes infeasible. For instance, for any online algo-
rithm, regardless of how it handles an incoming request, we
can always construct a request sequence where the algorithm
either accepts a large request and lacks capacity for subse-
quent ones or rejects all requests while waiting for a large
request that never arrives, leading to an unbounded competitive
ratio. Thus, prior knowledge of the incoming request set is
essential for meaningful competitive analysis [37], [42], [43].
To provide such bounds, we introduce two parameters, F1

and F2, which serve as conservativeness parameters for later
price setting of the bandwidth resource and energy resource,
respectively. These parameters enable a structured approach to
capturing the resource constraints and the impact of incoming
requests. Using these parameters, we define two base price
factors: µ1 =2(nTF1+1) and µ2 =2(nTF2+1), where n is
the maximum number of hops in any path within the LSN.
These factors ensure that the pricing mechanism reflects the
system’s conservativeness, aligning resource allocation with

the expected levels of congestion and energy consumption.
Later on, we will use µ1 and µ2 in the proof of competitive
analysis to establish a competitive ratio for our proposed
framework. In addition, we introduce two assumptions to
facilitate our competitive analysis:
Assumption 1. For any Ri and T , max{nT · δi(T ), nT ·∑

Ta∈[sti,edi]
Ωs(Ta, i)} ≤ ρi ≤ nTF1 + nTF2.

Assumption 2. For any Ri and T , δi(T ) ≤
mine∈E(T ){ce(T )}

log2 µ1

and
∑

Ta∈[sti,edi]
Ωs(Ta, T, i) ≤ mins∈S{ϖs}

log2 µ2
.

Assumption 1 establishes bounds on the valuation of each
request Ri. This ensures that the valuation of each request falls
within a competitive range, preventing any single request’s
valuation from being excessively high or low. Assumption 2
establishes bounds on the demand and total battery deficit
of each request Ri at each time slot T . This ensures that
each request’s demand is insufficient to easily saturate link
bandwidth or deplete the satellite’s battery energy.
Remark on Assumptions: These two assumptions are intro-
duced to support our theoretical analysis, as also adopted in
existing competitive analysis such as [34], [44]. While not
strictly required for practical implementation, they provide a
foundation for defining our algorithm’s key parameters µ1 and
µ2. During real-world operation, LSN operators can fine-tune
these parameters to better align with network conditions and
their goals as we discuss in Sec. V-B.

Based on the above two assumptions, we first analyze
whether constraints (7b) and (7c) are violated during the
algorithm’s online execution process in Lemma 1. Then, to
prove the competitive ratio, we first prove a lower bound on
the social welfare of the online algorithm in Lemma 2, and
then show the upper bound of the social welfare of the offline
optimal algorithm in Lemma 3. Finally, we obtain a compet-
itive ratio of 2 log2(µ1µ2) for our proposed online algorithm
in Theorem 1. To maintain continuity and readability, proofs
are delegated to the Appendix.

Let A denote the set of requests that are accepted by
Algorithm 1. Lemma 1 ensures the feasibility with respect
to the bandwidth constraint (7b) and energy constraint (7c)
over time:
Lemma 1. For ∀e ∈ E(T ), ∀T ∈ T ,

∑
i∈A κ(T, i)δi(T ) ≤

ce(T ). For ∀s ∈ S, ∀T ∈ T , bs(T ) ≥ 0.
Next we analyze the competitive ratio of the pro-

posed online algorithm. Let Ψ(T, i) ≜
∑

e∈Pi(T ) σe(T, i)+∑
s∈Pi(T ) σs(T, i) be the total cost summing up the congestion

and energy costs of all the links and satellites in the path of
request Ri at time slot T , and let k be the last request index
in A. Lemma 2 lower bounds the social welfare of the online
algorithm by 1

2 log2(µ1µ2)
times resource cost across the entire

network after considering all requests in A.
Lemma 2. 2 log2(µ1µ2)

∑
i∈A ρi ≥

∑
T∈T Ψ(T, k+1). (13)

Lemma 3 upper bounds the offline optimal social welfare
by a factor of the same final resource costs as in Lemma 2.
Lemma 3. Let A∗ be the set of requests accepted by an
optimal offline algorithm, and Q=A∗\A be the set of requests



accepted by the optimal offline algorithm but rejected by Al-
gorithm 1. Let l = max{Q}, then

∑
i∈Q ρi ≤

∑
T∈T Ψ(T, l).

Given that Lemma 2 provides a lower bound on the social
welfare of the online algorithm and Lemma 3 provides an
upper bound on the social welfare of the optimal offline
algorithm, we can now derive the competitive ratio of our
online algorithm, as shown in Theorem 1.
Theorem 1. Under Assumptions 1 and 2, the competitive ratio
of Algorithm 1 is 2 log2(µ1µ2) + 1.
Remark on competitive ratio with respect to dynamic
topology: Theorem 1 holds regardless of how the LSN’s
dynamic topology evolves over time in the long run. This
robustness stems from the design of our system model, which
captures dynamics on a per-time-slot basis. The impact of
congestion on each link is evaluated per time slot, while
the energy dynamics across current and future time slots are
encapsulated by the battery deficit in Eq. (2), which accounts
for the satellite’s received solar energy and remaining battery
energy at each time slot.

B. Practical Parameter Setting

The theoretical analysis assumes the worst-case scenario
where all requests arrive simultaneously and consume band-
width and energy resources concurrently. It is most likely
too conservative for practical scenarios where requests are
typically spaced out over time and location. In practice, F1

and F2 can be viewed as tunable conservativeness parameters
for congestion and energy consumption, respectively. They
define how conservatively the LSN operator estimates the
impact of incoming requests on network congestion and energy
consumption. F1 and F2 can be dynamically adjusted based on
observed and estimated traffic load and energy consumption
in the network. For instance, the LSN operator can monitor
the historical minimum and maximum demand and value of
requests, and then periodically update F1 and F2 based on
historical trends to maximize the actual achievable social
welfare. Furthermore, when given a prediction model for
future traffic patterns, our algorithm can be integrated with the
emerging Algorithm with Prediction (AoP) framework [45],
[46], which improves practical performance by leveraging
machine learning-based predictions while maintaining a worst-
case competitive ratio similar to that of our algorithm when
the predictions are inaccurate. We will explore integrating the
AoP framework with our algorithm in future work.

VI. PERFORMANCE EVALUATION

In this section, we describe the experiment settings, including
simulations with LSN dynamic topology, demand distribu-
tion, comparison algorithms, and parameter settings. We then
present the evaluation results on social welfare and network
metrics, specifically the number of energy-depleted satellites
and congested links.

A. Experiment Settings

Simulation with LSN dynamic topology. We extended the
ICARUS simulator [47] for evaluation. The simulation was

conducted with a one-minute time step over a total duration
of 96 × 4 minutes, where 96 minutes corresponds to the
orbital period of a satellite around the Earth. During the
whole experiment, each satellite completed four revolutions
around the Earth, undergoing periodic transitions between
sunlit regions and the Earth’s umbra, where solar energy is
unavailable. This setup captured the dynamic variations in
energy availability and network topology inherent to the LSN.
LSN topology and user distribution. The parameters of
SpaceX Starlink Shell I [48] were used to generate the LSN
topology, with 22 orbital planes and 72 satellites per plane,
totaling 1584 satellites, at an altitude of 550 km and an incli-
nation of 53 degrees. For ground users, the Earth’s surface was
divided into triangles using a triangular tiling, with each trian-
gle’s centroid representing a potential ground user data source
or destination. Areas unlikely to have users were excluded
based on Gross Domestic Product (GDP) distribution, leaving
1761 potential source/destination locations globally [47]. For
space users, we used real orbital TLE data [49] from 223
currently functional medium- and high-resolution EO satellites
operated by Planet Labs [50] to simulate the relative motion
between space users and broadband satellites in the LSN.
Request generation and resource consumption. We gener-
ated periodic traffic for high-quality communication between
source and destination pairs, which required the reservation
of network resources. Ten such source-destination pairs were
selected randomly. The arrival times of requests followed a
Poisson distribution, with a default arrival rate of 10 requests
per minute. We also tested various other arrival rates: 5, 15,
20, and 25 requests per minute in our evaluation. Each request
duration was randomly set between 1 and 10 minutes, with re-
quest sizes following an exponential distribution ranging from
500Mbps to 2000Mbps, and an expected value of 1250Mbps.
Comparison algorithms. To benchmark CEAR’s effective-
ness, we evaluated its performance against the following state-
of-the-art LSN routing algorithms:

• SSP: Single Shortest Path (SSP) is a baseline algorithm
that always selects the shortest path by minimizing the
number of hops between the source and destination.

• ECARS [27]: Energy and Capacity Aware Routing
(ECARS) aims to optimize traffic demand fulfillment
and minimize energy usage of LEO satellite batteries
in Earth’s umbra. It employs a heuristic linear weighted
function for routing, incorporating factors for link conges-
tion and battery energy levels to identify the path with the
lowest weighted sum; weight settings are detailed below.

• ERU [28]: Energy Routing Pruning-Depth of Discharge
(ERU) extends ECARS by adding a focus on battery
depth of discharge. It uses an energy threshold to limit
battery discharge. If a satellite’s battery usage exceeds
this threshold in a time slot, the associated link is pruned,
preventing the satellite’s use during that period.

• ERA [28]: Energy Routing Penalty-Depth Of Discharge
(ERA) is similar to ERU but, instead of pruning links, it
adjusts the congestion factor and energy factor when the
energy threshold is exceeded.
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Fig. 6: Social welfare ratio under default setting and varying request rate.
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Fig. 7: Energy-depleted satellites and congestion link number over time.

Parameter settings. The ISL and USL capacities were set to
20Gbps and 4Gbps, respectively. Power consumption parame-
ters included a solar panel harvesting power of 20W and a bat-
tery capacity of 117Kjoule [25]. The unit power consumption
for ISL transmission and reception, and USL transmission and
reception, were 0.25, 0.2, 1, and 0.8 Joule/Mbyte, respectively.

According to Sec. V-B, we set n = 20 and T = 10. F1 and
F2 were both set to 1. The valuation was set to a constant
value (by default 2.3 × 109) to match the social welfare
ratio and request success ratio metrics described below. Each
setting was executed five times using different random seeds to
mitigate random noise. For the other comparison algorithms,
the ECARS congestion factor was set to 0.3, and the energy
factor was set to 0.35 [28]. For ERA and ERU, the energy
threshold was set to 5 × 10−6 W·min/Mbit. For ERA, after
exceeding the energy threshold, the congestion factor was
adjusted to 0.15 and the energy factor was adjusted to 0.7 [28].

To evaluate the performance of the algorithms, we used the
following metrics: Social welfare ratio denotes the ratio of
the summation of all accepted request valuations, as defined
in Eq. (6), to the total valuation of all arriving requests. In
the case where the valuation is constant, this metric also
indicates the ratio of successful requests to the total number of
requests, which is known as the request success ratio. Energy-
depleted satellites number denotes the number of satellites
with remaining energy less than 20% of battery capacity.
Congestion link number denotes the number of links with
remaining bandwidth less than 10% of link capacity.

B. Evaluation Results

In this subsection, we evaluate the social welfare ratio of
different algorithms under varying request arrival rates, the
evolution of energy-depleted satellites and congested links
over time, the impact of LSN’s dynamic topology and energy
availability on social welfare, and the influence of the valuation
and conservativeness parameter on CEAR’s performance.

Fig. 6 shows the social welfare ratio for different algo-
rithms under default settings and different request arrival
rates, respectively. The error bars in the figure represent
the standard deviation calculated from the results of 5 runs
with different random seeds. CEAR outperformed the other
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Fig. 8: Social welfare ratio over time.

algorithms because it did not greedily accept all requests that
could be satisfied. Instead, CEAR evaluated requests based
on the current network state and resource allocation, thereby
avoiding situations where large demands could cause network
congestion or energy shortages, which would have lowered
the overall social welfare ratio. SSP, by always choosing the
shortest path, quickly depleted resources along those paths,
resulting in a lower social welfare ratio. ERU performed
worse than SSP because it conservatively considered battery
depth, pruning links that exceeded the energy threshold, which
prevented finding viable paths, thus lowering the social welfare
ratio. Both ECARS and ERA took congestion and energy
factors into account, but their path selection was based on
a linear function, which did not sensibly reflect resource
usage. Additionally, they lacked access control for online
arriving request, which resulted in a lower social welfare ratio
compared to CEAR.

Fig. 7 shows the evolution of energy-depleted satellites and
congested links over time under LSN’s dynamic topology
and energy availability. Compared to other algorithms, CEAR
maintained a high social welfare ratio while also having
fewer satellites with depleted energy throughout the evaluation
period. This was because CEAR tended to select routes that
minimized energy consumption and rejected requests that
could cause the battery depletion, preventing excessive energy
drain on individual satellites. Hence CEAR helped avoid
energy depletion and ensured the long-term availability of the
network. All the other algorithms exhibited a higher number
of satellites with depleted energy. SSP and ERU showed
more satellites with depleted energy while maintaining low
social welfare ratios. Although ERU provided some protection
against energy deficits, its effectiveness was very limited.
ECARS and ERA had more satellites with depleted energy
because they frequently used certain satellites to handle the
accepted requests, leading to rapid battery depletion in these
satellites. The right subfigure of Fig. 7 shows the number
of congested links at a request rate of 25. SSP had more
congested links due to frequent use of the same path, leading
to congestion even when the social welfare ratio was low.
Other algorithms accounted for network congestion, resulting
in fewer congested links compared to SSP. CEAR kept the
number of congested links low while maintaining a high social
welfare ratio by increasing the path cost when a request would
have caused excessive congestion.

Fig. 8 shows the changes in social welfare ratio over time
under the influence of the LSN’s dynamic topology and energy
availability. ERU’s conservative strategy pruned links even
with slight network usage, making pathfinding difficult and
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Fig. 9: Social welfare ratio under different valuation and F2.

lowering the social welfare ratio. Initially, all algorithms had
high social welfare ratios, but SSP, ECARS, and ERA accepted
high-resource requests, reducing future network capacity and
rapidly decreasing their social welfare ratios. CEAR’s social
welfare ratio decreased more gradually as it rejected requests
that could cause excessive congestion or energy depletion.

Fig. 9 shows how changes in the valuation and conservative-
ness parameter F2 affect the social welfare ratio of CEAR. As
the valuation increased, the social welfare ratio improved but
was limited by available network resources. An increased F2

led to satellites conserving more energy for future use, thereby
lowering the social welfare ratio of CEAR.

Overall, CEAR achieved higher social welfare than other
state-of-the-art algorithms while maintaining a low number of
energy-depleted satellites and congested links over the long
run, demonstrating its effectiveness in routing and resource
reservation in LSNs.

VII. CONCLUSION

To enable LSNs to support real-time applications requir-
ing stable communication performance, we investigated the
congestion- and energy-aware pricing and resource reservation
problem in LSNs. We designed an online algorithm, CEAR,
which processes online requests by setting prices for network
bandwidth and energy resources based on the current network
conditions. The algorithm then makes routing decisions based
on the specific requirement of requests and the prices in the
network, allowing it to reserve network resources for each
request while considering the levels of congestion and battery
depletion across the network. This ensures that accepted
requests have sufficient resources to be reliably supported,
which is crucial in highly dynamic LSNs. Through competitive
analysis, we proved that CEAR achieves a competitive social
welfare. Simulations on real LSN topologies demonstrated that
CEAR can maintain high social welfare ratio while keeping a
low congestion and energy deficit level.

APPENDIX

This section shows the proof of Lemmas 1–3 and Theorem 1.
Proof of Lemma 1

Proof. We prove this lemma by contradiction. Assume a
satellite s violates the energy constraint, i.e., bs(T ) < 0
for the first time after accepting request Ri. Then we
have λs(T, i) + (

∑
Ta∈[sti,edi]

Ω̄s(Ta, T, i))/ϖs > 1. Ac-
cording to Assumption 2, we have λs(T, i) > 1 −
(
∑

Ta∈[sti,edi]
Ω̄s(Ta, T, i))/ϖs ≥ 1 − 1/log2 µ2. So that we

can get an inequality about energy cost

σs(T, i) > ϖs(µ
1− 1

log2 µ2
2 − 1) = ϖsnTF2.

Similarly, if the bandwidth constraint is violated, we can
get an inequality about the congestion cost

σe(T, i) > ce(T )nTF1.

Let σunit
e (T, i) = σe(T,i)

ce(T ) and σunit
s (T, i) = σs(T,i)

ϖs
. Consider

only one time slot, one link, one satellite’s cost:
σunit
e (T, i) + σunit

s (T, i) > nTF1 + nTF2.

According to Assumption 1, we have
ρi ≤ nTF1 + nTF2 < σunit

e (T, i) + σunit
s (T, i).

This contradicts the fact that the request Ri is accepted by
Algorithm 1 in line 6.

Proof of Lemma 2
Proof. We prove this lemma by induction on k. For the
case k = 0, the inequality (13) holds as both sides evaluate
to zero. To prove (13), we need to prove that for any ac-
cept request Ri,

∑
T∈T

∑
e∈Pi(T ) (σe(T, i+ 1)− σe(T, i))+∑

T∈T
∑

s∈Pi(T ) (σs(T, i+ 1)−σs(T, i)) ≤ 2ρi(log2 µ1 +
log2 µ2).

Let ∆e(T ) = ce(T )µ
λe(T,i)
1 (2log2 µ1

δi(T )

ce(T )−1) and ∆s(T ) =

ϖsµ
λs(T,i)
2 (2log2 µ2

∑
Ta∈[sti,edi]

Ω̄s(Ta,T,i)

ϖs − 1). According to
Eq. (10), we have σe(T, i+ 1)− σe(T, i)=∆e(T ). Similarly,
according to Eq. (11), σs(T, i+ 1)− σs(T, i) = ∆s(T ).

According to Assumption 2 and the fact that 2x−1≤x when
0≤x≤1, we have ∆e(T )≤ log2 µ1

(
σe(T,i)δi(T )

ce(T ) + δi(T )
)

and
∆s(T ) ≤ log2 µ2 ((σs(T, i)

∑
Ta∈[sti,edi]

Ω̄s(Ta, T, i))/ϖs +∑
Ta∈[sti,edi]

Ω̄s(Ta, T, i)).

According to Assumption 1, we have ρi≥nTδi(T ) and ρi≥
nT

∑
Ta∈[sti,edi]

Ωs(Ta, i) ≥ nT(
∑

Ta∈[sti,edi]
Ω̄s(Ta, T, i)).

So that
∑

T∈T
∑

e∈Pi(T ) ∆e(T )+
∑

T∈T
∑

s∈Pi(T ) ∆s(T ) ≤
log2 µ1(ρi + Tnδi(T )) + log2 µ2(ρi + Tn(

∑
Ta∈[sti,edi]

Ω̄s(Ta, T, i))) ≤ 2ρi(log2 µ1 + log2 µ2).

Proof of Lemma 3
Proof. Suppose the offline algorithm utilizes path P ′

i (T ) to
serve the request Ri ∈ Q, which is accepted by the optimal
offline algorithm but rejected by Algorithm 1 at time T .
Since Ri is rejected by Algorithm 1, we have

∑
i∈Q ρi ≤∑

i∈Q
∑

T∈[sti,edi]

∑
e∈Pi(T )

σe(T,i)
ce(T ) δi(T ) +

∑
i∈Q

∑
T∈T∑

s∈Pi(T )
σs(T,i)

ϖs
Ω̄s(T, i) ≤

∑
T∈T

∑
e∈Pl(T ) σe(T, l)∑

i∈Q,e∈P ′
i (T )

δi(T )
ce(T ) +

∑
T∈T

∑
s∈Pl(T ) σs(T, l)∑

i∈Q,s∈P ′
i (T )

Ω̄s(T,i)
ϖs

≤
∑

T∈T Ψ(T, l).

The second last inequality holds due to the cost function’s
monotonicity, while the last inequality holds because the of-
fline algorithm is also bandwidth and energy-constrained.

Proof of Theorem 1
Proof. Building upon the results of Lemma 2 and Lemma 3,
we have

∑
i∈Q ρi+

∑
i∈A ρi≤

∑
T∈T

∑
e∈Pi(T ) σe(T, l) +∑

T∈T
∑

s∈Pi(T ) σs(T, l)+
∑

i∈A ρi≤2 log2(µ1µ2)
∑

i∈A ρi+∑
i∈A ρi ≤ (2 log2(µ1µ2) + 1)

∑
i∈A ρi.
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