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Trending and Special Attributes of Vehicular Cameras

vehicular cameras are more and more popular
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Vehicle Camera Market Size is projected to reach
Straits Research

USD 17.68 billion by 2030

, growing at a

Four special attributes:

Ubiquity High mobility  Privately-owned data

| |

|

Unavoidable Large coverage Less regulation

CAGR of 10%;

Lack of interface

|

No opt-out

C. Bloom, J. Tan, J. Ramjohn, and L. Bauer, “Self-Driving Cars and Data Collection: Privacy Perceptions of Networked Autonomous Vehicles,” p. 21.
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Privacy Concerns of Vehicular Cameras

) Bystanders’ feelings for vehicular camera video usages

J Strong discomfort for recognizing, identifying and tracking
individuals/vehicles

Recognize individual
Identify individual
Track individual
Recognize vehicle
Identify vehicle
Track vehicle

0% 50% 100%

B Very Comf.|"" Comf. . Neither | Uncomf. ] Very Uncomf.

C. Bloom, J. Tan, J. Ramjohn, and L. Bauer, “Self-Driving Cars and Data Collection: Privacy Perceptions of Networked Autonomous Vehicles,” p. 21.
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Privacy Concerns of Vehicular Cameras

) Videos shared for different purposes.

) Attackers can launch attacks like location inference attacks.

Victim near the
Triumphal Arch Eiffel Tower and trajectory

Z. Xiong, W. Li, Q. Han, and Z. Cai, “Privacy-Preserving Auto-Driving: A GAN-Based Approach
N c STATE U N |V E R S |TY to Protect Vehicular Camera Data,” in 2019 IEEE International Conference on Data Mining
(ICDM), Beijing, China, Nov. 2019, pp. 668—677. doi: 10.1109/ICDM.2019.00077.




Current Countermeasures

] Dashcam Cleaner:blur faces and license plates
] SecGAN: blur the whole video

@ Use pre-defined sensitive attributes

I A. Nodari, M. Vanetti, and . Gallo, “Digital privacy: Replacing pedestrians from Google
Street View images,” p. 5.

@ Also blur non-sensitive details

R. Uittenbogaard, C. Sebastian, J. Vijverberg, B. Boom, D. M. Gavrila, and P. H. N. de
With, “Privacy Protection in Street-View Panoramas Using Depth and Multi-View
Imagery,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Long Beach, CA, USA, Jun. 2019, pp. 10573-10582. doi:
10.1109/CVPR.2019.01083.

PECAM
Transf$nation

(b) Transformed Frame

(normal usage)
SecGAN

NC STATE UNIVERSITY 6

(a) Orignal Frame




INSPIRE Overview

) Replace protected instances with Al-synthesized non-existent
counterparts

Original Transformed
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Re-identification (Re-1D) Attack

) Re-identification (Re-ID) attack: finding the same instances across
different images with deep-learning models.
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Threat Model

J INSPIRE as a Software plugin on Car’s On-Board Unit or Mobile devices.

J Video contents are in a trusted environment before transformation, and
exposed to attackers after transformation.

Trusted Environment Untrusted Environment
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*RNG: random number generator
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Threat Model

) Attackers have white-box access to the system.

) Attackers launch Re-ID attack and Model-inversion attack to
transformed videos.
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Framework Design
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J Unsupervised generative machine learning framework
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System Implementation

J An INSPIRE system protect people and cars in the vehicular video.

Instance Curator
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System Implementation

] Object Detection:YOLOvV5

. Semantic Segmentation: U-Net
J Instance Synthesis: Pix2pixHD
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System Implementation

J Challenge: Contour alone cannot deal with overlapped instances.

J Solution: Use both contour and edge detection result for instance
synthesis.

Original Contour Only With Edge
Detection
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System Implementation

] Challenge: How to control privacy leaked by edge information?

J Solution: Apply a Gaussian filter before edge detection.

Canny
Edge
Detection

KS — Kernel Size
SD — Standard deviation
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Compared Systems

J INSPIRE: Replace instances with synthesized counterparts.
J SecGAN: Blur the whole video frame

Original

SecGAN

NC STATE UNIVERSITY
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Compared Systems

J Dashcam Cleaner: Blur faces and license plates.

J Bbox Blur: Blur instances according to their object detection
bounding boxes with Gaussian filters.

Original

Bbox Blur

NC STATE UNIVERSITY
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Evaluation Settings -

Privacy & Utility

] Settings .
g TABLE II: Details about Re-ID datasets
** Privacy:
* Y- Name .Query Gallery . Gallery @atepory Rezﬁ1
> Re-ID attaCI( . 1mages 1mages 1nstances WwWOor
Cityscapes (person) 4924 4924 267 person v
L Image-wise thwarting rate Duck MTMC 2228 17661 1110 person 4
> Model i . k Market-1501 3368 19732 a2 person v
odel inversion attac Cityscapes (car) 10450 10450 147 car 7
O  Train adversarial models VeRi 1678 11579 200 car v/
. . VeRi-CARLA 424 3823 50 car X
s Utility:
» Statistical counting
O  Accuracy
» Obiject detection
L mean average precision
TABLE III: Details about utility evaluation datasets.
Dataset Names Number of videos Average people Average cars
per frame per frame
Cityscapes 3 5:70 4.68
Kctifont Positive 17 2.08 4.45
cadent 1 Negative 31 2.60 4.82
BDDI100K 54 0.95 4.04
NC STATE UNIVERSITY 21




Re-ID Attack: Influence of Gaussian filters

J Applying the Gaussian filter in INSPIRE can improve and stabilize the
protection performance against Re-ID attacks.

J In INSPIRE, applying a Gaussian filter with small kernel size and SD is sufficient
to thwart most Re-ID attacks.

J For INSPIRE and BBox Blur, improving the kernel size and SD of the Gaussian
filter enhances the Re-ID thwarting rate.
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Re-ID Attack: System-wise Comparison

J In practice, INSPIRE with Gaussian filter can effectively thwart
Re-ID attacks for its protected instances.

J Attribute-level and frame-level obfuscation cannot thwart Re-ID
attacks with state-of-the-art deep learning models

IS @G OBB [@DC CISG IS BIG [@OBB @DC [ISG
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o 1 o 0.
Cityscapes Duke MTMCMarket-1501 Cityscapes VeRi-CARLA VeRi
Dataset Dataset
(a) Person Re-ID thwarting rates (b) Car Re-ID thwarting rates

IS: INSPIRE; 1G: INSPIRE with Gaussian Filter (KS: 5, SD: 5);
NC STATE UNIVERSITY DC: Dashcam Cleaner; SG: SecGAN. 23




Model Inversion Attack

) Inverse model: Pix2pixHD, tries to restore original images from
transformed images.

J Collected 9948 transformed-original image pairs for training.

J Trained and applied adversarial models to SecGAN and INSPIRE.
. INSPIRE can thwart model inversion attacks by design.

Original  SecGAN  SocSAN nepire  INSPIRE
inverse inverse
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Utility of Transformed Videos

J Dashcam Cleaner maintains best utility (however, no privacy
aginst Re-ID attacks).

J INSPIRE performs better than

and , and

preserves higher utility on the Cityscapes datasets.

100

80

Accuracy (%)

207

601

40

IS G [OBB EDC [EOSG

93

96

94

Accident

Cityscapes BDD100K

Dataset

(a) Counting accuracy

MAP (x1072)

100

(00}
o

o
<

N
Q

N
Q

S G [OBB EDC [[SG

97
91 92

71

Accident Cityscapes BDD100K
Dataset

(b) Detection mAP

NC STATE UNIVERSITY

IS: INSPIRE; 1G: INSPIRE with Gaussian Filter (KS: 5, SD: 5)
DC: Dashcam Cleaner; SG: SecGAN.
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Privacy-utility Trade-off

] Metrics:

< Utility metric: Object detection mAP. INSPIRE achieves

% Privacy metric: Re-ID thwarting rate. the best privacy-
utility trade-off

among compared

J Utility-privacy product

% Object detection mAP XRe — ID thwarting rate systems.
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1100~ 08
Q e
s %0 5 5os 0.55
(@)} e
—1—§ H | (60 £ &
= 0.41
N\ N 140 2 o
Q \ £ = 0.24
& 0.2
\\\ % W20 2 % 0.12
N = 3
0.0 " 0 000 : : :
IS IG BB DC SG 2 INSPIRE BBox Dashcam SecGAN
Compared systems Blur  Cleaner
(a) Utility-privacy trade-off. (b) Utility-privacy product.
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Other Perspectives, Conclusions

J INSPIRE achived

\/

*¢ Instance-level privacy protection

on Replace instances with Al-synthesized ones
Highly dynamic vehicular videos

J What could be improved

\/

*¢ Better object detection and segmentation |Jse |atest models
% Better synthesized instances (e.g. YOLOv8 & Diffusion)
¢ Usability for computational constraint devices

Transplant to Mobile edge
» Privacy protected by the image segmentation computing framework

» Image synthesis is computational heavy

¢ Better visual effects } Apply Object Tracking
» Currently only for machine analysis. Algorithms (e.g. DeepSORT)

] Conclusions: Instance-level Privacy Protection on Vehicular
CameraVideos
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