ESDI: Entanglement Scheduling and Distribution in the Quantum Internet

Huayue Gu, **Ruozhou Yu**, Zhouyu Li, Xiaojian Wang, Fangtong Zhou North Carolina State University

Outline

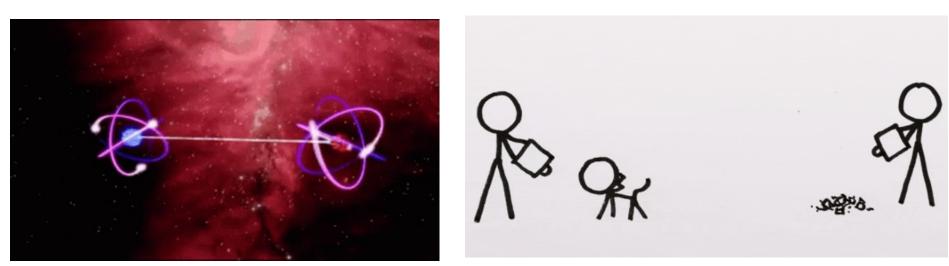
Background and Motivation

Quantum Network Model

Solution Design

Performance Evaluation

Discussions, Future Work and Conclusions

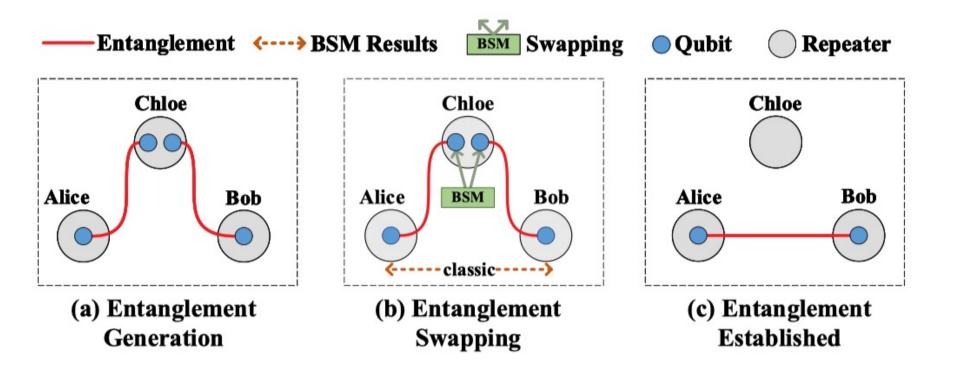

A quantum network

A quantum network enables efficient and secure quantum communication based on **quantum entanglement.**

Qubits: quantum information = *quantum bits*

Quantum entanglement of two qubits

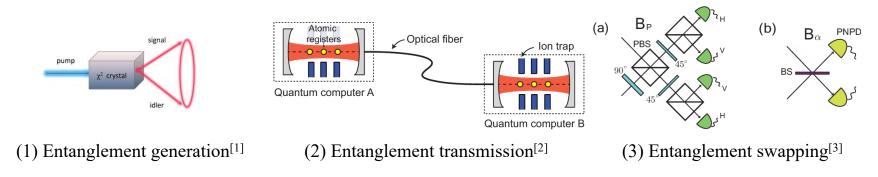
- Reveal both by revealing either
- Even separated by a large distance

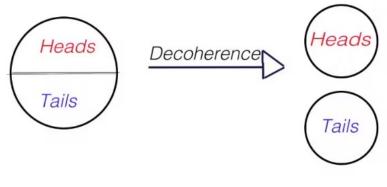


(1) Quantum entanglement^[1]

(2) Quantum teleportation^[2]

[1] https://tenor.com/view/entanglement-quantum-entanglement-science-atoms-gif-17770432 [2] https://www.popularmechanics.com/science/a25699/how-quantum-teleportation-works/


Entanglement generation and swapping


In this way, each end-to-end entanglement is thus generated along an entanglement path in a quantum network.

Unique properties

Probabilistic quantum operation in quantum networks:

• **Decoherence** in quantum applications:

(4) Quantum decoherence^[4]

[1] https://en.wikipedia.org/wiki/Spontaneous_parametric_down-conversion

[2] Kim, Tony Hyun. An optical-fiber interface to a trapped-ion quantum computer. Diss. Massachusetts Institute of Technology, 2011.

[3] Lee, Seung-Woo, and Hyunseok Jeong. "Bell-state measurement and quantum teleportation using linear optics: two-photon pairs, entangled coherent states, and hybrid entanglement." *arXiv preprint arXiv:1304.1214* (2013).

[4] https://hackernoon.com/decoherence-quantum-computers-greatest-obstacle-67c74ae962b6

Quantum applications

- Time-insensitive applications:
 - Support long-term stream of entanglements
 - Require secure communications
 - E.g., Quantum key distribution (QKD)^[1]

• Time-sensitive applications:

- Complete tasks as quickly as possible
- Avoid information decoherence
- E.g., Distributed quantum computing (DQC)^[2]

Related work and limitations

- Specialized quantum network topologies
 - Repeater chain, lattices, star, and ring-like topologies
- Entanglement routing^[1,2,3]
 - Bufferless assumption: entanglement decoherent after one time slot
- Optimal remote entanglement distribution (ORED)^[4]
 - Buffered assumption: entangled qubits stored in quantum memories
 - Optimal EDR (entanglement distribution rate)
 - Only one source-destination (SD) pair
 - No scheduling consideration

[1] S. Shi and C. Qian, "Concurrent entanglement routing for quantum networks: Model and designs," in ACM SIGCOMM, 2020, pp. 62–75.
[2] Y. Zhao and C. Qiao, "Redundant entanglement provisioning and selection for throughput maximization in quantum networks," in IEEE INFOCOM, 2021, pp. 1–10.
[3] Y. Zeng, J. Zhang, J. Liu, Z. Liu, and Y. Yang, "Multi-entanglement routing design over quantum networks," in IEEE INFOCOM, 2022.
[4] W. Dai, T. Peng, and M. Z. Win, "Optimal protocols for remote entanglement distribution," in IEEE ICNC, 2020, pp. 1014–1019.

Contributions

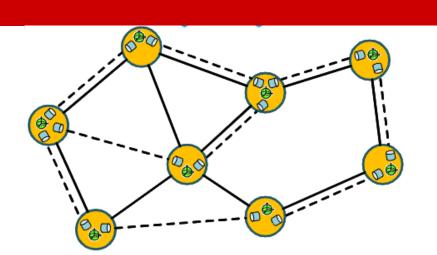
- Problems
 - A buffered quantum network
 - Multiple requests (commodities) for multiple SD pairs
 - Define the entanglement scheduling and distribution problem
- A general framework for scheduling and distribution (ESDI)
 - **ESDI-O**: commodities having demands but no deadlines
 - **ESDI-E**: commodities having demands and deadlines
- Data plane protocol design
- Evaluations

Outline

Background and Motivation

Quantum Network Model

Solution Design


Performance Evaluation

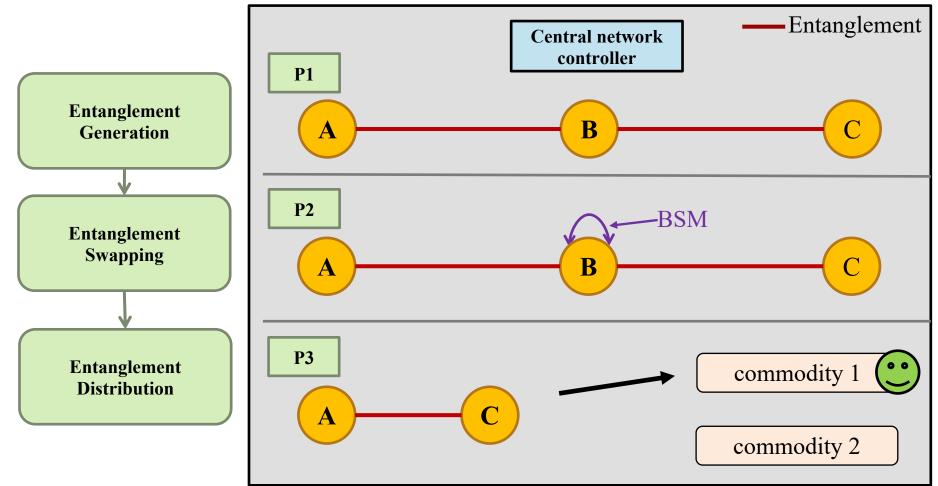
Discussions, Future Work and Conclusions

Quantum Network Model

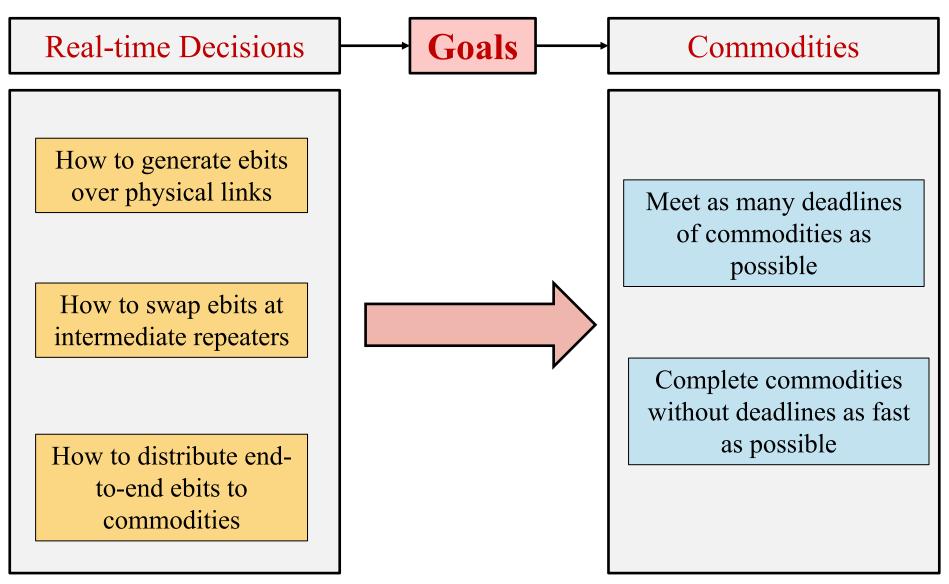
An undirected graph G = (V, E)

• *V*: the set of quantum repeaters

- *E*: the set of physical channels (links) between repeaters
- *c_e*: the number of ebits that can be generated along each link in unit time
- p_e : the probability of successfully generating an elementary ebit
- q_v : the probability of successfully performing swapping


Entangled qubit pairs as ebits

Ebits generated along a physical channel as *elementary ebits*


Quantum Network Model

A time-slotted quantum network with discrete time $T = \{1, 2, 3, ...\}$

Three phases in each time slot

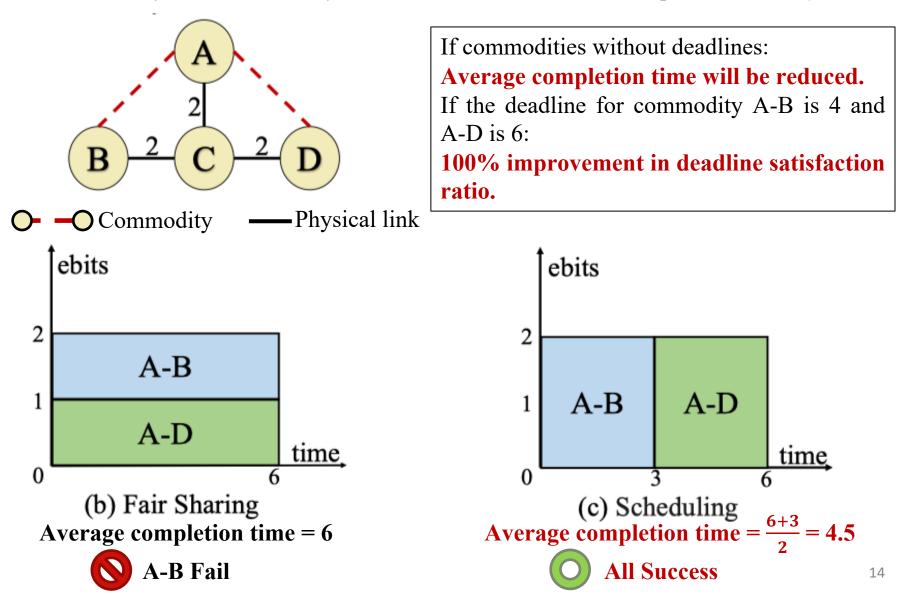
Goals

Outline

Background and Motivation

Quantum Network Model

Solution Design


Performance Evaluation

Discussions, Future Work and Conclusions

NC STATE UNIVERSITY

A motivating example

The demand of A-B = demand of A-D = 6 ebits. The EDR is 1 ebit per time slot. $c_e = 2$.

Problem Statement

Definition 1. Given a quantum network *G* and commodities $Z = \bigcup_i Z_i$, a solution to the *entanglement scheduling and distribution (ESDI)* problem consists of three algorithms, $(\mathcal{A}_{gen}, \mathcal{A}_{swap}, \mathcal{A}_{dis})$ to perform the following tasks respectively:

- $\mathcal{A}_{gen}(S_T^0)$: In Phase-1 at time *T*, decide the number of ebits to attempt along physical link $e \in E$;
- A_{swap}(S¹_T): In Phase-2 at time T, given the number of ebits between node pairs m: k and k: n respectively, decide how many ebit pairs are used to swap for node pair m: n, for ∀ m, k, n ∈ V;
- A_{dis}(S²_T): In Phase-3 at time T, given the number of ebits between each SD pair s: t ∈ U, decide how many ebits are distributed to each commodity zⁱ_j ∈ Z_i.

Multi-commodity remote entanglement distribution

Question

Can we design a multi-commodity formulation (MRED)?

Challenge

- Multiple SD pairs for scheduling in the quantum network.
- Each SD pair has multiple commodities arriving at different time slots.

Idea

Can we apply classical task scheduling disciplines to quantum networks?

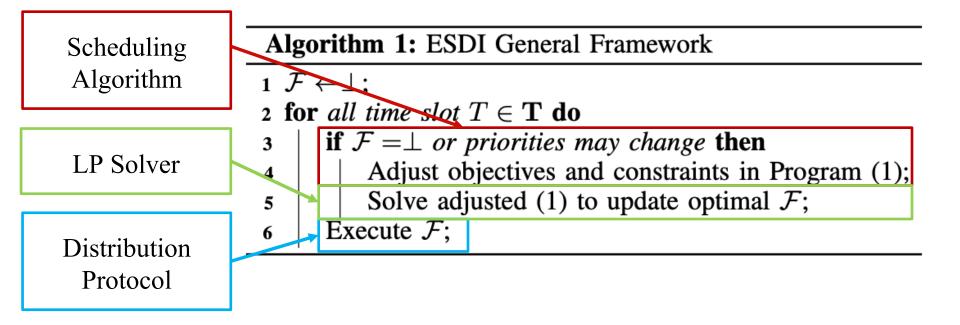
NC STATE UNIVERSITY

Multi-commodity remote entanglement distribution

A linear programming problem extended from ORED(MRED)find
$$\mathcal{F}$$
(1)s.t. $f_{m:n}^{m:k} = f_{m:n}^{k:n}, \quad \forall k, m, n \in V;$ (1a) $I(m:n) = \Omega(m:n), \quad \forall m, n \in V, m:n \notin U;$ (1b) $I(s:t) \ge \Omega(s:t), \quad \forall s:t \in U.$ (1c)Two auxiliary functions $I(m:n)$ and $\Omega(m:n)$ are defined as:

$$I(m:n) \triangleq 1_{m:n} p_{mn} c_{mn} g_{m:n} + \sum_{k \in N \setminus \{m,n\}} \frac{q_k}{2} \left(f_{m:n}^{m:k} + f_{m:n}^{k:n} \right); \quad (1d)$$

$$\Omega(m:n) \triangleq \sum_{k \in N \setminus \{m,n\}} \left(f_{m:k}^{m:n} + f_{k:n}^{m:n} \right), \quad (1e)$$


 $\mathcal{F} = \left\{ f_{m:n}^{m:k} \ge \mathbf{0} \mid m, k, n \in V \right\} \cup \left\{ g_{m:n} \in [\mathbf{0}, \mathbf{1}] \mid (m:n) \in E \right\}: \text{ the solution satisfying all constraints } f_{m:n}^{m:k}: \text{ the number of ebits between } m: k \text{ being contributed to swapping with ebits between } k:n.$ $g_{m:n}: \text{ the number of ebits that would be attempted to be generated along physical link } m:n \in E$

Theorem 1. The optimal total EDR η^* is upper bounded by $max_F\{\sum_{s:t}(I(s:t) - \Omega(s:t))|F \text{ is feasible to (1)}\}$, and there exits a stationary ESDI protocol with expected total EDR equal to η^* .

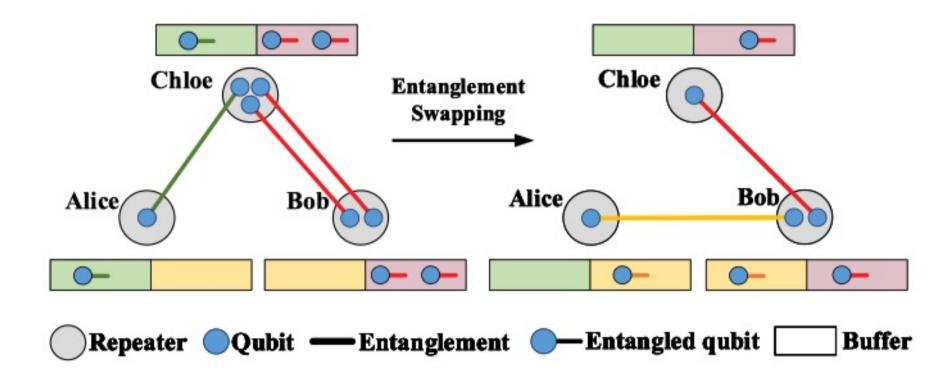
A General Framework for ESDI

ESDI General Framework:

- 1. Scheduling (prioritizing certain SD pairs)
- 2. Work conservation (maximizing network EDR)

Scheduling Design for ESDI

- **Challenge 1**: commodities without deadlines
- **Goal:** minimize the average completion time of all commodities
- Technique: Shortest job first (SJF)

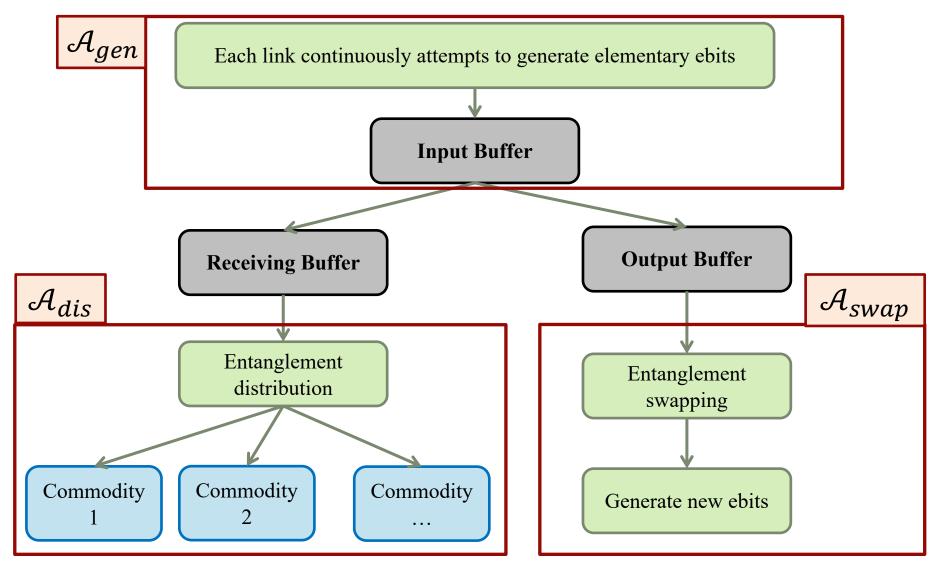

(MRED-DC)
$$\max \sum_{s:t \in U} \eta_{st}$$
(3)
s.t.
$$\eta_{s_i t_i} \Delta_j^i \ge \sum_{z_j^i \in P_c^i[l]} \Theta_j^i,$$
(3a)
$$\forall s_i: t_i \in U_c, l = 1, 2, \dots, |P_c^i|;$$
Constraints (1a)–(1e) and (2a).

- **Challenge 2:** commodities with deadlines
- **Goal:** finish transmitting the information before irreversible errors happen
- **Technique:** Earliest deadline first (EDF)

(MRED-SP)
$$\max \eta_1, \max \eta_2, \ldots, \max \eta_{\kappa},$$

 $\max \sum_{s:t \in U} \eta_{st}$ (2)
s.t. $\eta_{st} = I(s:t) - \Omega(s:t), \quad \forall s:t \in U;$ (2a)
Constraints (1a)–(1e).

19


Buffered quantum network

Assumption:

1. Each quantum repeater is equipped with sufficient quantum memories as buffers.

Distribution Design for ESDI

Outline

Background and Motivation

Quantum Network Model

Solution Design

Performance Evaluation

Discussions, Future Work and Conclusions

Evaluation Methodology

Generate graphs with 20 nodes and picks 1000 random SD pairs. $q_v = p_e = 0.9$, $c_e = [3, 10]$. The following control plane algorithms were compared:

- ESDI-B: basic ESDI without scheduling as in MRED;
- **ESDI-O**: ESDI without deadlines in Algorithm 2;
- **ESDI-E**: ESDI with deadlines in Algorithm 3;
- **E2E-F**: fidelity-aware protocol ^[2] maximizing end-to-end EDR. We set fidelity as 1 since it is not considered;
- **QPASS**: QPASS protocol ^[3] trying to maximize end-to-end EDR for multiple SD pairs.

For QPASS and E2E-F, the number of paths K = 15 for Yen's algorithm.

For each commodity in default:

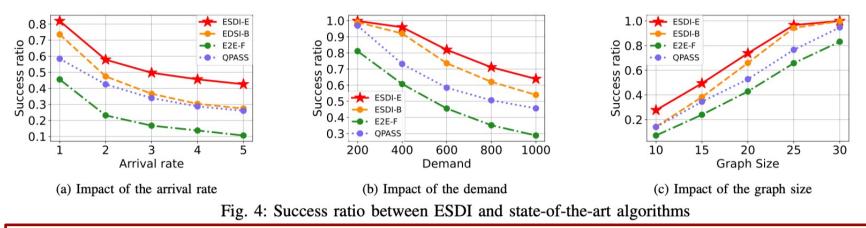
Arrival rate followed a Poisson Distribution with $\lambda = 1$ by default.

Demands followed an exponential distribution with mean of 600 ebits and a minimum demand of 100 ebits per commodity.

Deadline followed $\delta_j^i = a_j^i + \bar{\delta}_j^i \cdot d_j^i$, where $\bar{\delta}_j^i$ is a unit deadline following a uniform distribution in the range $[\mu - 0.1, \mu + 0.1]$.

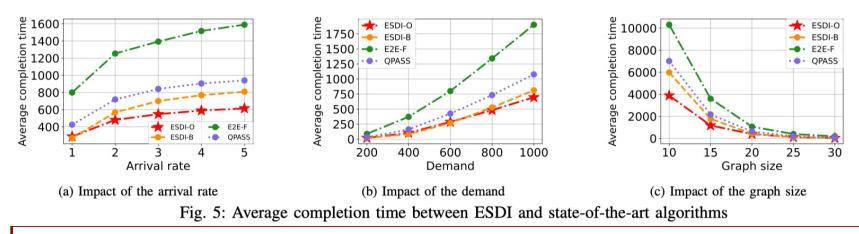
Scheduling length $\kappa = 1$

Metrics:


Success ratio: the ratio of the number of commodities finished before their deadlines.

Average completion time: the average time between each commodity's arrival and completion when there is no deadline.

[2] Y. Zhao, G. Zhao, and C. Qiao, "E2E fidelity aware routing and purification for throughput maximization in quantum networks," in IEEE INFOCOM, 2022.


^[1] W. Dai, T. Peng, and M. Z. Win, "Optimal protocols for remote entanglement distribution," in IEEE ICNC, 2020, pp. 1014–1019

^[3] S. Shi and C. Qian, "Concurrent entanglement routing for quantum networks: Model and designs," in ACM SIGCOMM, 2020, pp. 62-75.

Performance Evaluation

MRED with optimal EDR can significantly improve network-wide throughput.
 Scheduling via prioritization (ESDI-E) can additionally finish more commodities before deadlines.

Scheduling via prioritization (ESDI-O) can reduce average completion time for commodities without deadlines.

Performance Evaluation

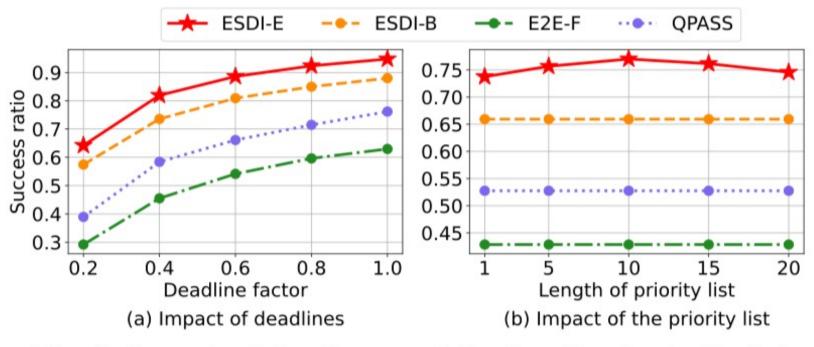


Fig. 6: Impact of deadlines and the length of priority list

(6a): Increasing success ratios with increasing deadline factors(6b): A trade-off between scheduling and work conservation

Outline

Background and Motivation

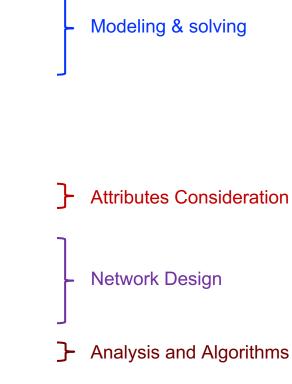
System Modeling

Solution Design

Performance Evaluation

Discussions, Future Work and Conclusions

NC STATE UNIVERSITY


Other Perspectives, Conclusions

- What we have done in this work
 - Entanglement scheduling and distribution

heterogeneous quantum applications

- What could be improved
 - Entanglement: throughput, fidelity, cost
 - Entanglement source deployments
 - Layer quantum networks
 - Queueing-based buffer analysis
 - Multi-hop fidelity improvements

Thank you very much! Q&*A*?