
CoinExpress: A Fast Payment Routing Mechanism
in Blockchain-based Payment Channel Networks

Ruozhou Yu, Guoliang Xue, Vishnu Teja Kilari, Dejun Yang, Jian Tang

Abstract—Although cryptocurrencies have witnessed explosive
growth in the past year, they have also raised many concerns,
among which a crucial one is the scalability issue of blockchain-
based cryptocurrencies. Suffering from the large overhead of
global consensus and security assurance, even leading cryp-
tocurrencies can only handle up to tens of transactions per
second, which largely limits their applications in real-world
scenarios. Among many proposals to improve cryptocurrency
scalability, one of the most promising and mature solutions is
the payment channel network (PCN), which offers off-chain
settlement of transactions with minimal involvement of expensive
blockchain operations. In this paper, we investigate the problem
of payment routing in PCN. We suggest crucial design goals in
PCN routing, and propose a novel distributed dynamic routing
mechanism called CoinExpress. Through extensive simulations,
we have shown that our proposed mechanism is able to achieve
outstanding payment acceptance ratio with low routing overhead.

Keywords—Cryptocurrency, payment channel network, routing,
blockchain, Bitcoin Lightning Network

I. INTRODUCTION

Ever since the invention of Bitcoin by Satoshi Nakamoto in
2008 [17], we have well witnessed the blooming of thousands
of altcoins1, which (along with Bitcoin) jointly support a
digital payment market with over $800B of capitalization at
its peak2. It is envisioned that, in addition to the digital world
where digital payments already prevail, sectors such as bank-
ing, international trading, manufacturing, healthcare, taxation
and many more will also enjoy extensive benefits from this
trend. Furthermore, the underlying blockchain technology has
inspired (and will continue to do so to) numerous innovations,
fundamentally transforming the business models of internet-
of-things, supply chain, auditing etc., and even exerts political
and human right influences with applications in governance
transparency, democratic voting and freedom of speech.

However, current mainstream cryptocurrencies such as Bit-
coin and Ethereum, although achieving strong security through
decentralization, bear some severe limitations that greatly
hinder their applications in our daily life. A significant one
is the scalability issue brought by the requirement of global
consensus and the large-overhead of security assurance through
expensive consensus algorithms. Both Bitcoin and Ethereum
employs the Proof-of-Work consensus algorithm, which can
only generate blocks in a pre-specified speed, and each block
can only include a limited number of transactions to avoid

Yu, Xue, and Kilari ({ruozhouy, xue, vkilari}@asu.edu) are with Arizona
State University, Tempe, AZ 85287. Yang (djyang@mines.edu) is with Col-
orado School of Mines, Golden, CO 80401. Tang (jtang02@syr.edu) is with
Syracuse University, Syracuse, NY 13244. This research was supported in part
by NSF grants 1421685, 1525920, 1704092, 1717197, and 1717315.

1Altcoin refers to cryptocurrencies that are alternative to Bitcoin.
2Data is based on CoinMarketCap (https://coinmarketcap.com/).

centralization. As a consequence, the Bitcoin blockchain can
only process up to 7 transactions per second (tps) [19], while
the number for Ethereum is around 15 tps [7], compared to
over 45000 peak tps handled by Visa [19].

Facing this issue, there have been extensive efforts on
improving blockchain scalability in several orthogonal direc-
tions. Among them, a promising proposal is to construct off-
chain payment channels, which carry out transactions with
minimal involvement of the blockchain itself. Specifically,
users build peer-to-peer (P2P) channels with pre-deposit funds,
and transfer values by re-adjusting fund allocation on the
channels for each on-going transaction. Each transaction is
protected by a smart contract, such that any non-cooperative
behavior will be punished by granting all fund on the chan-
nel to the counter-party. In such a scenario, all transactions
via a channel are stacked, and will be jointly published to
the public blockchain upon channel expiration. Therefore the
involvement of expensive blockchain operations is limited to
only channel establishment, close-out, and the rare events of
dispute arbitration in case of non-cooperative behaviors.

It has been envisioned that a distributed network comprised
of these payment channels, namely a payment channel network
(PCN), can take most of the transactions off-chain, hence dras-
tically reducing payment overhead and increasing scalability
of the payment system [19]. Both leading cryptocurrencies
are actively seeking the deployment of PCNs alongside their
main blockchains; see Sec. VI. However, PCN has its own
problems to be addressed. Maintaining a payment channel
basically requires locking a certain amount of funds within
the channel for an extended amount of time. Hence each
normal user only has the capability to maintain a small number
of channels with closely related parties. When paying to an
arbitrary recipient in the world, most likely an indirect payment
is needed, which spans multiple channels in the network.
Such indirect payments can cause a number of problems.
First, one or multiple payment paths from sender to recipient
need to be provisioned before the payment starts. In network
terminology, the payment must be routed before going through.
Second, a contract is needed to guarantee non-repudiation at
each intermediate node. Other issues include denial-of-service
attacks, privacy, node availability, transaction fees, etc.

In this paper, we investigate routing for indirect payments
in PCN. PCN routing has a number of distinct character-
istics, which renders it intrinsically different from routing
in traditional computer networks. First, PCN routing focuses
on finding routes with sufficient capacity (fund) to serve a
payment, rather than finding the shortest transmission paths
as in traditional network routing. Second, PCN routing is
fully distributed, as no central administrative operator exists in
PCN; even if such an operator exists, it would not be trusted

https://coinmarketcap.com/

(a) In a PCN, user A requests payment of 0.5 Bitcoin to E within 4 minutes. A
finds payment path A→B→C→D→E which has sufficient balance and can settle
within 4 minutes. A sends initiate payment to B for forwarding. Each hop forwards
payment. If intermediate node D wants to steal the payment by not forwarding
the payment, C will then publish this situation to the public blockchain, who will
judge on D’s dishonesty and grant all funds on channel C→D to C as a punishment
to D. Assuming all parties are honest, no blockchain operation is involved.

A

B

C

D

E R

H

Secret

Hash

H

Send hash H

Forward payment with H

Backward confirmation with R

H

H

H

R

R

R

R

4 min

2 min

1 min

3 min

H

HTLC:

(b) For request A→E, recipient E generates secret R and its hash
H , and sends H to A. A encodes H and deadline 4 minutes into
its contract with B, such that B cannot spend the payment without
providing R to A within 4 minutes. Each node forwards payment
similarly, and employs a decreasing deadline. Upon reception, E
will provide R to D to spend D’s payment, while D and so forth
will do the same to previous hops, until A receives R.

Fig. 1: PCN overview and Hashed TimeLock Contract (HTLC)

by any user, since its existence already defeats the spirit of
decentralization that has set the foundation of cryptocurrencies.
Third, PCN routing is more sensitive to dynamics in the
network, due to the unique property of payment channels that
the fund in a channel is commonly consumptive and non-
recoverable unless other events happen; see Sec. II. Last but
not least, privacy plays an important role; minimizing privacy
leaks of the payer/payee (and possibly the involved nodes) can
be a priority task in certain scenarios.

In face of these challenges, we propose CoinExpress, a
routing mechanism that efficiently finds “express lanes” for
cryptocurrency-based digital payments in PCNs. As a first step
in PCN routing, CoinExpress focuses on high-performance and
efficient payment routing, while leaving the privacy issue as
future enhancements. We make the following contributions:

• We investigate important design goals of routing in PCN,
and propose a practical model for PCN routing based on
network flow and concurrent flows.
• We propose a distributed approach for PCN routing,

which, in addition to finding routes that fulfill the pay-
ment, providing guarantee to the timeliness and availabil-
ity regarding user’s payment deadline and the expiration
times of the underlying channels, respectively.
• We have shown, through simulations, that CoinExpress

not only achieves superior payment successful ratio, but
also drastically reduces overhead over existing work.

The rest of this paper is organized as follows. In Sec. II,
we introduce the background of PCN and routing, and state
the design goals. In Sec. III, we present our system model.
In Sec. IV, we propose our distributed PCN routing design,
and describe the detailed algorithms for each involved party in
routing. In Sec. V, we show performance evaluation results of
our design compared to a state-of-the-art PCN routing scheme
and other baselines. In Sec. VI, we review existing work in
related areas. In Sec. VII, we conclude this paper.

II. BACKGROUND AND OVERVIEW

A. System Overview

A PCN consists of several components, as shown in
Fig. 1(a). Their detailed functions are explained below.

In PCN, a user is identified by a unique account address,
usually also the public key of the account. A payment channel
can be viewed as a temporary joint account between two users,
whose balance is divided by the two parties and the division
can be adjusted based on agreement of both users. A channel
is established by both parties each depositing a certain amount
into the joint account. The total deposit amount is called
the channel capacity, which defines the maximum amount of
value that can be transferred via this channel. A unidirectional
channel only allows monotone balance adjustments, while a
bidirectional channel allows adjustments in both directions.

In PCN, a transaction is essentially a channel balance
update agreed upon by both parties. A channel is protected
by multi-signature smart contracts, which ensure validity, non-
equivocality and non-repudiation of the on-going transactions.
When one party publishes obsolete balance history to reverse
settled transactions or to double-spend, the contract guarantees
that the dishonest party is punished by granting all its re-
maining channel balance to the other party. This economically
prevents an adversary from utility gain via dishonest behaviors.

A payment from sender to recipient is performed via a
number of transactions in different channels, organized as
either a payment path or a payment flow. A direct payment
can be made between two parties who share a channel, and
is settled immediately after the corresponding transaction is
completed. If two parties do not share a channel, an indirect
payment is needed, which requires balance updates on multiple
channels. This, however, can lead to issues if an intermediate
node denies performing a subsequent transfer after receiving a
preceding one, or the recipient denies receiving the payment.

Hashed TimeLock Contract (HTLC) [19] is introduced to
solve the multi-hop problem, as shown in Fig. 1(b). An HTLC
consists of both a hash lock and a time lock. In the hash lock,
recipient generates a random value R with hash value H , and
sends H to the sender. Sender, as well as any intermediate
node, includes H in the transaction contract, such that the
transferred fund is spendable by the transferee only when the
secret R used to generate H is provided to the transferor.
This ensures non-repudiation of transfer reception, as no one
can spend its received amount without acknowledging the
reception. In the time lock, each transaction is restricted by

a completion deadline, such that if the transferor does not
receive R by the deadline, the transferred fund will be refunded
to the transferor. In an indirect payment, each forward hop
employs a decreasing deadline, taking into account the time for
completing its own balance update as well as the time the two
parties wish to wait to tolerate delay fluctuations in other hops.
Any non-cooperative behavior will cause the corresponding
transaction to be published on the public blockchain, which
will grant all funds in the channel to the counter-party as
a punishment to the non-cooperative party. By employing a
sequence of time-outs in the opposite direction of the payment
path, it is guaranteed that no transferee or recipient can hold
up a channel until any preceding channel expires (in which
case it can repudiate the reception and steal the fund).

From the above discussion, the key in performing a suc-
cessful indirect payment is to find a route with sufficient
balance, in the form of a path or a set of paths (a flow), such
that an end-to-end time lock can be established in each path
that respects the expiration time of each channel in the path.
Next, we elaborate a number of unique challenges of routing in
PCN, and a set of desired design goals of any routing solution.

B. Challenges in Routing Design

At a first glance, routing in PCN is just a variant of the
widest path problem or the maximum flow problem, for which
many efficient algorithms exist. Unfortunately, the problem is
not as simple as it seems due to many practical constraints.

First, due to the time lock in HTLC, each payment path
needs to satisfy a sequence of time delay constraints. For
example, the last hop’s channel expiration time needs to be
lower bounded by the cumulative update and transmission
delay of all hops in the path; the second last hop’s expiration
time needs to be lower bounded by the same cumulative delay
plus the backward delay of the last hop; so on and so forth.
Moreover, a user may require fast payment settlement, by
specifying a deadline before which the payment needs to be
settled. For the payment flow problem, it is well-known that
the Multi-Path routing with Bandwidth and Delay constraints
problem (MPBD) is NP-hard, corresponding to our routing
problem that only considers the last hop’s expiration time.

Second, the remaining balance on each directional pay-
ment channel is non-interfering monotone. Here, a directional
payment channel refers to either a unidirectional channel, or
one direction of a bidirectional channel. For each directional
payment channel, its remaining balance is consumed after each
transaction. Non-interfering monotonicity means that unless
the channel is explicitly interfered with, e.g., is recharged
via external funding or opposite-direction transactions, the
consumed balance cannot be used by other transactions on the
same direction. We use the term monotonicity for abbreviation.

One consequence of channel monotonicity is the unpre-
dictability of balances in the network, which is due to the
highly dynamic nature of the network. The available balance
of each channel is constantly changing with every transaction.
Thus it is impractical or even impossible for every node to keep
track of the real-time balances of all channels in the network,
especially when modern payment networks typically scale to
billions of nodes [3], [19]. To find a route with sufficient
balance, the sender could either estimate channel balances

based on empirical data, but with a high risk of payment failure
due to estimation inaccuracy, or actively probe for available
balances, which incurs probing overhead.

Moreover, high network dynamics and channel monotonic-
ity can cause concurrency issues. When multiple concurrent
payments compete on one or more channels, they may block
each other from progressing. In the worst case, deadlocks could
happen, locking up funds on all involved channels [15].

C. Design Goals

Addressing these challenges require routing mechanisms
that satisfy a set of design goals, which we elaborate below.

• Timelock-compatibility: In an HTLC-guarded PCN, a
major requirement of payment routing is to ensure that a
feasible end-to-end time lock can be successfully estab-
lished along each path, which guarantees the commitment
of honest processing at any involved node.
• Distributedness: The routing mechanism must not rely

on a centralized trusted party. Centralized routing is
subject to single point of failure upon external attacks,
and hence cannot be trusted by users. Instead, nodes
need to communicate with each other and conduct local
computations to find routes for payments.
• Concurrency: A routing mechanism should be non-

blocking in that at any time, at least one payment can
progress without waiting for concurrent payments.
• Goodput: The mechanism should maximize system

goodput, measured by the number or total value of
successful payments in a given time window. This is not
equivalent to maximizing system throughput, which is the
total value that can be delivered in the period. A partially
fulfilled payment is viewed as failed if the recipient does
not receive the full amount within the deadline.
• Efficiency: First the mechanism should minimize the

routing and payment latency incurred by users. In more
time-sensitive scenarios, the mechanism should guarantee
payment settlement within a user-specified deadline. Sec-
ond, the mechanism should only incur limited overhead
on both the end-points and the intermediate nodes.
• Privacy: The mechanism should preserve secrecy of

various information in the network, which is distinguished
into the following types:

– Sender/Recipient Privacy: An adversary should not be
able to determine the sender/recipient of any payment
between non-compromised parties.

– Value Privacy: An adversary should not be able to
learn the exact value of any payment. Moreover, the
adversary should learn as little information as possible
about the range of value of any payment.

– Path Privacy: An adversary should not be able to learn
the path(s) of any payment, other than the nodes it has
already compromised.

– Channel Balance Privacy: An adversary should not be
able to learn the exact balance of a payment channel at
any given time, unless the channel connects to a node
it has already compromised.

– Channel Load Privacy: An adversary should not be
able infer the load on a payment channel connecting
non-compromised nodes, from sources such as the
settlement delay of the channel.

As a first step, in this paper we aim to achieve the
first five goals: timelock-compatibility, distributedness, concur-
rency, goodput and efficiency. Jointly achieving privacy with
these goals is a non-trivial task due to the large overhead of
most privacy-preservation techniques. Hence we leave efficient
privacy-preserving routing to our future work.

III. SYSTEM MODEL

A. Network Model

A distributed PCN is modeled as a weighted directed graph
G = (V,E). V is the set of nodes, i.e., users each of whom has
established at least one payment channel with a peer user. E is
the set of links. A link denotes either a unidirectional channel
from one user (the transferor) to another (the transferee), or
one direction of a bi-directional channel between two users.

Each link has several attributes. First, each link e ∈ E
has a channel capacity ce, denoting the total amount of value
deposit into the underlying payment channel by both parties.
Second, each link e ∈ E also has a current balance be. For a
unidirectional channel (represented by a single link in G), the
capacity ce is the maximum amount of value that the transferor
can send to the transferee before the channel expires, while the
balance be is the remaining amount of value that the transferor
can send. For a bidirectional channel (two collateral links in
opposite directions between two users), the two links have
the same capacity, equal to the sum of their balances, i.e.,
b(u,v) + b(v,u) = c(u,v) = c(v,u). A link e always has be ≤
ce. For simplicity, we assume the set E only contains links
with positive balances at any time. A link with zero balance
is temporarily removed from the graph (i.e., the views of the
nodes it connects), until its balance gets recharged by new
deposits or payment transactions on the opposite direction.

Payment through a channel is not instant. First, each
channel needs to complete arriving payments sequentially.
Second, it requires time for the two parties to agree on the
balance update, which is the forward processing time of the
current hop. Third, due to the time lock in HTLC, the channel
further needs to release the locked transferred value after
receiving acknowledgement from the next hop, which requires
a certain amount of waiting plus backward processing time.
For simplicity, we omit the transmission delay between parties,
which can be incorporated into the forward and backward
processing times. We use d1e to denote the forward wait time
plus the forward processing time of a link e, and d2e to denote
the backward wait time plus the backward processing time, at
any given time. We let de = d1e + d2e. Each link further has
an expiration time ηe, denoting the time when the underlying
channel becomes unavailable. For a payment via e to be
successful, it must settle before the channel expires.

We assume that each user only has local knowledge on all
its in-coming and out-going links, including their capacities,
expiration times, as well as instantaneous balances and delays.
Each sender/recipient additionally knows the other party’s
address, but does not know the other party’s location in the
network. In general, each node may have rough estimation
of the overall network status based on local information, but
cannot know the instantaneous balance or delay of any remote
link, due to network asynchrony and dynamics.

B. Payment Model

A payment request is denoted by a quintuple R =
(s, t, a, st, dl), where s and t are the sender and recipient
respectively, a is the amount to be paid, and st and dl are
the start time and deadline respectively. Let P be the set of
all paths in the PCN. A payment request R is realized by a
payment plan, i.e., a set of paths PR ∈ P , where each p ∈ PR

is an (s, t)-path in the network. Each path p ∈ PR is associated
with a payment value, denoted by vp. For a payment plan PR

to be successful, it needs to satisfy the following conditions:

• PR is feasible, iff for any link e ∈ E where PR(e) ⊆ PR

is the set of paths through e, we have
∑

p∈PR(e)
vp ≤ be. (1)

• PR is available, iff for any p ∈ PR and e ∈ p, let p+e ⊆ p
be links including and after e in p, then we have

st+
∑

e∈p
d1e +

∑

e∈p
+
e

d2e ≤ ηe. (2)

• PR is timely, iff for any path p ∈ PR, we have

st+
∑

e∈p
de ≤ dl. (3)

• PR is fulfilling, iff
∑

p∈PR

vp ≥ a. (4)

Based on the above definition, a payment plan that is
feasible, available, timely and fulfilling is able to transfer
a amount of value from sender s to recipient t within the
deadline dl, and we call it a realizing payment plan for request
R. In this paper, we are interested in finding a realizing
payment plan for each payment request, while satisfying as
many design goals as possible.

IV. DYNAMIC ROUTING DESIGN

Most existing bandwidth-aware routing algorithms cannot
be applied in our scenario, due to the frequently changing
link balances and delays. A naive approach is to empirically
estimate the channel statuses and route accordingly, yet such
an approach is subject to poor accuracy and can lead to low
goodput. We propose CoinExpress, a novel probing-based dy-
namic routing mechanism. In CoinExpress, the sender probes
for channel statuses before payment, and reserves balances in
advance. CoinExpress is fully distributed, adaptive to network
dynamics and concurrent, and achieves high goodput. Unfor-
tunately it does not provide privacy guarantee, which we aim
to address in future work.

It should be noted that due to the availability and timeliness
constraints, the problem of finding a realizing payment plan
is NP-hard, even when the sender has full knowledge of the
network. With only the timeliness constraint, the problem is
equivalent to the MultiPath routing with Bandwidth and Delay
constraints problem (MPBD), which has been proved to be
NP-hard in [16], and the best centralized algorithm one can
expect is an expensive fully polynomial-time approximation
scheme (FPTAS) [16]. Instead, our approach is a distributed
algorithm derived from the Ford-Fulkerson algorithm for max-
imum flow [9], and applies a locking technique to resolve
concurrency among multiple simultaneous requests. Before
diving into our algorithm, we first define some basic concepts
on network flow.

A. Network Flow Preliminaries

To avoid ambiguity, we use balance to replace the term ca-
pacity that is commonly used in flow networks. For simplicity,
for u, v ∈ V such that (u, v) /∈ E, we assume b(u,v) = 0.

Definition 1 (Network flow). Given network G with balances
{be}, source s and destination t, an (s, t)-flow is defined as a
mapping f : V × V 7→ R

∗, with the following properties:
1) Flow conservation: for ∀v ∈ V, v 6= s, t,

∑

(u,v)∈E

f(u, v) =
∑

(v,u)∈E

f(v, u);

2) Balance constraint: f(u, v) ≤ b(u,v).
We define b(f) =

∑

(s,v)∈E f(s, v) −
∑

(v,s)∈E f(v, s) as the

flow value of f .

Definition 2 (Concurrent network flows). Given network
G and a set of flows F = {f}, we say that the flows
are concurrent iff they satisfy the joint balance constraint:
∑

f∈F f(u, v) ≤ b(u,v).

Definition 3 (Residual network). Given network G with

balances {b(u,v)}, and a flow f , the residual balance bf(u,v)
of each pair of u, v ∈ V is defined as follows:

bf(u,v) =

{

b(u,v) − f(u, v) + f(v, u), (u, v) or (v, u) ∈ E;

0, otherwise.

The residual network Gf regarding f is the network with the
residual balances.

Note that the residual network may contain more links
than the original one, due to the addition of backward links
(v, u) when only the forward link (u, v) exists in the original
network. For simplicity, we assume that each flow contains
no loop with positive flow value, hence f(u, v) and f(v, u)
cannot both be positive for ∀u, v ∈ V . For completeness, we
show the Ford-Fulkerson algorithm in Algorithm 1.

Algorithm 1: Ford-Fulkerson max-flow algorithm [9]

Input: network G = (V,E), source s, destination t
Initialize: start with an empty flow f and Gf = G

1 repeat

2 Find (s, t)-path p in Gf with positive balance fp;
3 Add p to f , and update Gf ;
4 until no augmenting (s, t)-path can be found;
5 return f .

B. Dynamic Routing Design

To apply the Ford-Fulkerson algorithm, we need to address
several challenges. The first one is to transform Algorithm 1
into a distributed algorithm where each node only has local
knowledge. Second, the timeliness and availability constraints
need to be taken into account. Third, the concurrency issues
needs to be tackled to ensure no harmful racing between
concurrent requests. We address these in the following.

Our CoinExpress algorithm is jointly shown in Algo-
rithms 2, 3 and 4. Note that when we say “send a message
along a link e”, we essentially mean one party sending message
to the other through a secure communication channel, rather
than actually sending fund through the payment channel.

Algorithm 2: Sender algorithm

Input: local links of G, request R = (s, t, a, st, dl)
Initialize: empty flow f , residual balances {bfe}

1 while b(f) < a do

2 for any out-going link e of s such that bfe > 0 do
3 Construct probe

ρ = (R,min{a− b(f), bfe}, d
1
e, [(e, ηe, d

2
e)]) ;

4 Send ρ along e;

5 Wait for current-round confirmation for time Tconf;
6 if confirmation γ = (R, p, β) is received from e then

7 if bfe ≥ β then
8 Add path p to f with value β;
9 Update residual bfe ;

10 else
11 Send cancellation κ=(R, p, β, cancel) via p;

12 else
13 Send cancellation along all paths;
14 Retry within time T ;

15 return flow f with b(f) = a.

Our algorithm employs a distributed breadth-first-search
(BFS) to search for augmenting paths. For the request, each
node maintains a local view of the residual network, with
residual balances initialized to the initial link balances. In each
round, the sender sends a forward probe ρ = (R, β, δ,Π) to
each neighbor who has a link e with positive residual balance
from the sender, with starting balance β = min{a− b(f), bfe}
and delay δ = d1e; the parameter Π is an ordered list of all
links, their expiration times and their backward delays along
the path, and is initialized as Π = [(e, ηe, d

2
e)]. Each node,

upon reception of the probe, also sends out a probe along each
out-going link e with positive residual balance (except to the
receiving neighbor), with updated probe ρ′ = (R, β′, δ′,Π′)
where β′ = min{β, bfe}, δ

′ = δ′ + d1e and Π′ = Π ‖ (e, ηe, d
2
e)

(‖ means appending). When the recipient receives a probe,
first it checks for the timeliness constraint, i.e., whether
st + δ +

∑

e∈p d
2
e ≤ dl; second, it checks for availability of

each link, i.e., whether st+δ+
∑

e∈p
+
e
d2e ≤ ηe. If either check

fails, the recipient drops the probe and waits for the next one.
Otherwise, the recipient returns a confirmation γ = (R, p, β)
backward along p, to confirm the new augmenting path p and
flow value β. Each node then updates its residual balances,
and waits for the next round. The algorithm stops when the
sender has collected sufficient flow value for the request. If the
recipient cannot find an augmenting path in the current round,
it informs the sender, who cancels all reserved flows and retry
later. If the sender does not receive confirmation within Tconf

of sending the probe, it also cancels all flows and retry later.

There are two things worth mentioning. First, the asyn-
chrony of the network can affect the algorithm’s performance.
Ideally, we want each node to forward the probe that has the
lowest cumulative processing time, in order to better meet
the timeliness and availability constraints. However, such a
probe may not be the first to reach an intermediate node or
the recipient; probes from paths with longer processing times
but shorter transmission delays may arrive first. To account
for this, each intermediate node can wait for a certain period
τ after receiving the first probe of the current round, before
forwarding the probe with the lowest cumulative delay ever

Algorithm 3: Intermediate node algorithm

– Forward direction operation:

Input: probe ρ = (R, β, δ,Π), incoming link ein

Initialize: request list R, flow fR, residuals {bfe (R)},
current BFS round last hop elast(R)

1 if R /∈ R then

2 Add R to R, and create empty flow fR and bfe (R);

3 for any out-going link e 6= ein such that bfe (R) > 0 do
4 Update probe ρ = (R, β, δ,Π) such that

β = min{β, bfe (R)},
δ = δ + d1e, and
Π = Π ‖ (e, ηe, d

2
e) (‖ means appending);

5 Send ρ to neighbor along e;
6 Store last hop: elast(R)← ein;

– Backward direction operation:

Input: confirmation γ = (R, p, β), incoming link e
7 if residual balance bfe (R) ≥ β then
8 Add path p to fR with value β;
9 Update residual bfe (R) based on Eq. (5);

10 Send γ backward along link elast(R);
11 else
12 Send cancellation κ=(R, p, β, cancel) to t along p;

– Cancellation operation:

Input: cancellation κ = (R, p, β, cancel)
13 Cancel previous update of β of residual balance;
14 Send κ to next hop along p;

seen; the recipient can also wait before making a decision
on path selection. The choice of τ is subject to each node’s
estimation of the network status, as well as the urgency of
the request. On the other hand, probes may arrive out-of-
order (w.r.t. rounds) in asynchronous networks. The sender can
attach a round number rnd in each probe. Each node should
discard probes in earlier rounds after a probe with higher rnd
is received, because the recipient has already made a decision
on the augmenting paths in the previous rounds.

The second thing is about concurrency. When multiple
requests are jointly probing in the residual network, they may
steal each other’s flow by pushing flow through backward
links that have reversed flow of other requests, a problem
defined as capacity stealing by Rohrer et al. [22]. To address
this, we apply their locking technique. Specifically, each node
maintains a residual network for each request R, with flow fR
and residual balances bf(u,v)(R) for u, v ∈ V . For each (u, v),

the amount fR(v, u) is locked for request R only, while the rest

bf(u,v)(R)−fR(v, u) can be shared by other requests. Therefore

the residual balance in the concurrent case is defined as

bf(u,v)(R)=

b(u,v)−
∑

R′
∈R

fR′(u, v)+fR(v, u),

if (u, v) or (v, u) ∈ E;

0, otherwise.

(5)

When a new augmenting path goes through a link with locked
balance, it first consumes the locked balance before consuming
any remaining link balance, thus allowing other requests to
come through. Another race condition that may happen is when
two or more requests find augmenting paths that share the same
link simultaneously, in which case their joint augmented flow

Algorithm 4: Recipient algorithm

– Upon receiving probe:

Input: probe ρ = (R, β, δ,Π)
1 Form path p from list Π;
2 if δ +

∑

e∈p d
2
e > dl − st then drop ρ and wait;

3 for e ∈ p do

4 if δ +
∑

e∈p
+
e
d2e > ηe − st then drop ρ and wait;

5 Construct confirmation γ = (R, p, β);
6 Send γ backward along p;
7 For subsequent probes of the same round who also pass

Lines 2–4, save them into ρlist until a next-round
probe is received;

– Upon receiving cancellation:

8 if there is subsequent probe in ρlist then
9 Pop the next probe ρ with path p and value β;

10 Construct confirmation γ = (R, p, β);
11 Send γ backward along p;
12 else
13 Inform sender s of the failure.

may exceed the link balance. In this case, each node will serve
confirmations in a first-come first-serve (FCFS) manner; when
a subsequent confirmation arrives that cannot be served, the
node will send a cancellation to reverse all updated residual
capacities at intermediate nodes and inform the recipient. The
recipient can then select another path to augment, or if no path
can be found, inform the sender to either initiate a new round
of BFS or abort and retry later.

Hence, the only race condition that may happen is when
multiple requests are simultaneously confirming paths that
block each other, in which case each path’s confirmation is
cancelled. The algorithm resolves this by two methods. First,
the recipient can select another path to confirm, until all
received paths are simultaneously blocked by others, which
is very rare under normal network conditions. Second, in
the rare event of all paths being blocked, the recipient will
inform the sender, who will cancel its reserved balances on
all confirmed paths to let pass other requests, meanwhile
employing random back-off to retry in a later time (before
its start time). In summary, through flow locking, each request
will enjoy dedicated balance once enough confirmations are
received. Therefore no single request will block the network
from progressing at any stage of the actual payments.

C. Discussions

Here we highlight a few things that should be considered
when implementing the above mechanism.

Criterion for path selection: In the proposed mechanism,
the sender initiates each probing round, while the recipient
is responsible for selecting paths to confirm in each round.
One thing that may affect the algorithm’s performance is the
criterion of selecting paths to confirm. In general, selecting
short paths over long paths can reduce payment settlement
time. On the other hand, selecting paths with larger balance
can reduce the number of paths per payment, hence reducing
the number of routing rounds, as well as the overhead and
transaction fees during actual payment. Choosing the right

criterion depends on the specific quality-of-service requirement
of the actual use cases [25]. For example, requests with larger
amounts may prefer widest paths to avoid long waiting time for
routing and large fees, while smaller and more time-sensitive
requests may prefer shortest paths to reduce settlement time.

Flooding avoidance in large networks: In large-scale net-
works, using BFS can lead to large flooding overhead. A
common alleviating technique is to limit the hop count of
each probe, i.e., encoding a time-to-live (TTL) field in the
message. The sender specifics the maximum TTL in the initial
probe. Each node, upon reception of a forward probe, deducts
the TTL by 1. If the TTL of a probe becomes 0, it will be
dropped by the node that receives it. Advanced techniques can
be employed to find the best TTL value to use in practice [6].

V. PERFORMANCE EVALUATION

A. Experiment Settings

To realistically evaluate our distributed mechanism, we
developed a simulation tool based on network simulator
ns-3 [1]. The tool was developed as an application module in
ns-3, which agrees with the actual standing of PCN protocol
in real-world networks.

We used mesh topologies between users to model a PCN
overlay network, where each node is connected to its PCN
neighbors via direct communication links. Users were de-
ployed in randomly generated Watts-Strogatz graphs [26]. The
number of nodes varied from 50 to 250. Each node had a
degree of 10, and each link had a re-wiring probability of 0.2 in
the Watts-Strogatz model. We generated bi-directional payment
channels with a uniform capacity of 100. However, each
channel’s initial balances on both directions were uniformly
divided. Each channel’s settlement times were uniformly gen-
erated in [10, 50] seconds. Since our approach guarantees path
availability, we assumed an arbitrarily large expiration time
for all channels, to simulate the PCN in a static period of
time; we focused on the timeliness constraint in our evaluation.
We considered the transmission delays between nodes, which
were uniformly generated in [50, 200] ms. The data rate of the
communication links were 100 Mbps.

In each simulation, we generated 1000 Poisson arriving re-
quests between random nodes with mean arrival of 30 seconds.
Requests had amounts uniformly generated in [25, 75]. We
allowed 5 minutes for routing before the payment start time,
and also a 5 minute payment deadline after start. Requests not
routed before start time were cancelled and aborted.

B. Comparison Algorithms

CoinExpress has two versions: CnExp-W with widest path
selection, and CnExp-S with shortest path selection.

We compared our algorithm to a state-of-the-art routing
algorithm proposed by Rohrer et al. [22], which is based on
the push-relabel algorithm for network flow. Before heading to
the results, we first elaborate on a few issues of their algorithm.
First, their algorithm is delay-agnostic. Unlike our augmenting
path algorithm where path lengths can be easily bounded, the
push-relabel algorithm cannot encode delay information during
flow updates. Second, their algorithm requires an additional
step of flow decomposition after obtaining a flow, which incurs

extra overhead and routing time. Our algorithm directly derives
payment paths during probing. Later on, we also show that
their algorithm results in an excessive number of paths using a
standard flow decomposition (Edmonds-Karp algorithm). This
greatly increases system overhead during the payment process,
and leads to high transaction fees in pay-for-use PCNs.

We denote their algorithm as PR-A, which stands for Push-
Relabel in delay-Agnostic mode. For reference, we also im-
plemented PR-D (Push-Relabel in Delay-aware mode), where
we enforced strict delay bound to paths generated by the
standard flow decomposition. In addition, two more baselines
were implemented: WP for one-round widest path routing, and
SP for one-round shortest path routing. Both baselines used
confirmation after probing to assure non-blockingness.

C. Performance Metrics

All algorithms achieve timelock-compatibility (except PR-
A), distributedness and concurrency. We therefore mainly
evaluated the goodput and efficiency of the algorithms. The
following metrics were used:

• Acceptance ratio: number of accepted payments over all
submitted requests.
• Average accepted value: the average amount of values

of each accepted payment.
• Payment delay: the average payment delay of each

accepted payment.
• Routing time: the average time consumed for routing for

each accepted payment.
• Number of messages: the average number of network-

wide messages for successfully routing a payment.
• Number of paths: the average number of payment paths

for each accepted payment.

D. Evaluation Results

(a) Acceptance ratio (b) Average accepted value

Fig. 2: Goodput (higher the better): acceptance ratio and
average accepted value against number of nodes.

1) Goodput: Fig. 2 shows the acceptance ratios and average
accepted values of the algorithms. From Fig. 2(a), CoinExpress
algorithms achieve almost the highest goodput, except when
compared to PR-A. This is because PR-A does not consider
the timeliness constraints, hence although it achieves higher
acceptance ratio, most accepted payments will fail due to
deadline violation, as shown later. CnExp-W achieves slightly
better goodput than CnExp-S, because the latter in general
needs more paths due to each path carrying less value, where
there may not be sufficient number of paths in some cases.

(a) Average payment delay (b) Average routing time (c) Average number of messages (d) Average number of paths

Fig. 3: Timeliness and efficiency (lower the better): average payment delay, routing time, number of messages, and number of
paths. In (a), dotted line DL shows the uniform 5-minute deadline for all payment requests.

All algorithms (except PR-A) has decreasing acceptance with
increasing nodes. This is because although the nodes increase,
the rewiring probability does not, which means longer paths
between arbitrary node pairs. In other words, less paths that
satisfy the timeliness constraints exist. PR-A has increasing
acceptance because it neglects the deadlines. When enforcing
timeliness on PR-A, we get the PR-D algorithm, which has
extremely low acceptance. Less than 1% of the payments can
be successfully settled using PR-D. Hence we neglect PR-D in
the rest of our analysis due to insufficient samples for average
analysis. The overhead of PR-D is very similar to PR-A, as
their only difference is in the flow decomposition, which has
a low overhead compared to the push-relabeling process.

In Fig. 2(b), our algorithms not only accept more payments,
but also accept payments with larger amounts, compared to WP
and SP. CoinExpress achieve near-optimal average accepted
values (the average is 50 based on our experiment setting),
very close to the delay-agnostic PR-A algorithm.

2) Timeliness and Efficiency: Fig. 3 further shows the time-
liness status and efficiency metrics of the compared algorithms.
First, in Fig. 3(a), we can observe the important timeliness
measure of the algorithms. We can see that all algorithms
except PR-A respect timeliness constraints (below DL). PR-
A can result in payment delays of 8× the deadline, severely
violating users’ fast payment requirements.

Fig. 3(b) shows the routing time of the algorithms. PR-
A has extremely long routing times compared to the other
algorithms. This may be a little counter-intuitive: Push-Relabel
is regarded as a faster algorithm for maximum flow than
Ford-Fulkerson. The reason is that here we are interested in
finding a fulfilling flow rather than a max-flow, in which case
Push-Relabel is slower due to its non-greedy pushing of flow
in each step. Meanwhile, all others algorithms employed the
flooding avoidance technique by setting a fixed TTL, hence
their efficiency grows very slowly with increasing network
size, demonstrating the great scalability of our algorithms.

Fig. 3(c) further shows the routing overhead in terms of
the total number of routing messages per request. We can
see that PR-A has a much larger overhead than CoinExpress,
not to mention WP and SP. One reason is the flooding
avoidance technique, which greatly restricts the overhead of
our algorithms; however, Push-Relabel is hard to employ such
techniques, resulting in large overhead for flow operations.

Fig. 3(d) shows the average number of payment paths
output by each algorithm. As a baseline, both WP and SP have

only one path. We can see that both CnExp-W and CnExp-S
result in very few payment paths, typically around 2–3. Mean-
while, PR-A can result in as many as 25 different payment
paths for a single payment. This reflects two things. First, this
further explains why the routing overhead of CoinExpress is
much lower than PR-A: our algorithms require much fewer
paths to be probed. Second, our algorithms have much lower
payment overhead by employing only a few paths, which can
result in much lower transaction fees in practice.

To summarize, our algorithm achieves very impressive
acceptance goodput performance compared to all algorithms
that consider user timeliness constraints, while achieving much
lower overhead than the state-of-the-art Push-Relabel routing.

VI. RELATED WORK

A. Blockchain Scalability

Since the invention of blockchain in Bitcoin [17], exten-
sive efforts have been devoted to improving the scalability
of blockchain-based cryptocurrencies. Existing efforts can be
divided into on-chain solutions and off-chain solutions. On-
chain solutions focus on improving scalability by modifying
existing blockchain design. A few promising techniques in-
clude increasing block size, using lightweight consensus al-
gorithms, sharding [13], using Directed Acyclic Graph (DAG)
instead of chain to store blocks [20], etc. Increasing block size
directly increases a blockchain’s capability to store and process
more transactions, yet its direct threat is the fear of cen-
tralization. Lightweight consensus, such as Delegated Proof-
of-Stake (DPoS) [12] or Practical Byzantine Fault-Tolerance
(PBFT) [5], can greatly reduce overhead and increase scal-
ability over the original Proof-of-Work (PoW) algorithm in
Bitcoin and Ethereum. However, they either sacrifice decen-
tralization (e.g., DPoS) or require trust relationship between
users (e.g., PBFT). Sharding alleviates the scalability issue by
dividing transactions into shards that are stored and processed
at different nodes [13]. Block DAGs use weaker consensus
where each transaction is only confirmed by a few instead of
all up-coming blocks, which lowers block security.

Off-chain solutions seem more promising in solving
blockchain scalability with limited compromise to its de-
centralization and security. One approach is to run multiple
parallel blockchains that support cross-chain communications.
Currently, the difficulty in this direction lies in the design of
cross-chain communication protocols. Exchange-based proto-
cols are the most popular at present, which uses one or multiple

chains as cryptocurrency exchanges that bridge between all
other chains; for example, see [24]. The problem is that the
exchanges can be more vulnerable to attacks, which may
endanger the entire exchanging system. Another proposal is a
hierarchy of blockchains organized as a blockchain tree, where
child chains are supervised and secured by parent chains [18].
It does not solve the attacks on chains, but instead constrains
the loss due to attacks to the local chain only.

PCN is possibly the only mechanism that are totally off-
chain for now. Here, most transactions are carried in the off-
chain payment network, and does not involve the blockchain
at all. The only involvement of the blockchain is either
when opening or closing the channels, or when parties are
non-cooperative in channel updates, when the blockchain is
used as arbitration. Through protocols such as HTLC, PCN
guarantees almost the same security as the original blockchain,
while dramatically increasing its scalability. Moreover, PCN
technology is among the most mature over all the above, since
the leading two cryptocurrencies are already on the edge of
deploying PCN for their global chains: the Lightning Network
for Bitcoin [19], and the Raiden Network for Ethereum [2].

B. PCN and Routing

The PCN concept originates from the credit/payment net-
works in economics and finance [8]. Early credit networks
do not have blockchains, hence they commonly rely on the
trust relationship between peers to establish and maintain
channel states [8]. Ripple [3] and Stellar [4] are among the
first to employ blockchain technology in credit networks.
Much like in PCN, routing in credit networks can only
be done in a distributed manner due to decentralization.
Malavolta et al. [14] studied privacy-preserving routing in
credit networks, where they designed a landmark-based routing
scheme for privacy-preserving distributed routing. This idea
is extended by Roos et al. [23] to provide enhanced routing
capability. However, landmark routing assumes a small set
of trusted landmark users who controls the entire routing
process, an assumption that is commonly not true, and if
true can lead to centralization of the P2P network. For PCN,
Prehodko et al. [21] first proposed a beacon-based routing
scheme in the Lightning Network, borrowing from existing
ideas in mobile ad hoc networks. Their proposal is a path-based
routing scheme, and does not guarantee the fulfillment of the
payment. Rohrer et al. [22] proposed a distributed push-relabel
algorithm for PCN routing with guaranteed concurrency.

Aside from the routing problem, some related efforts in
PCN include automatic channel re-balancing [11], privacy-
preserving contracts [10], [15], etc. In general, PCN is a
promising area of research, where extensive efforts are in need
to address its performance, security and privacy issues.

VII. CONCLUSIONS

In this paper, we studied the routing problem in PCN. We
distinguished a number of important design goals for PCN
routing, and proposed a mathematical model to capture these
goals. As a first step, we designed a distributed routing mech-
anism, which achieved all but the privacy goals. We showed
through extensive simulations that the proposed mechanism
achieves outstanding goodput performance and very small

overhead compared to the state-of-the-art routing design. In
our future work, we will further address the privacy issue in
PCN routing, as well as other possible issues.

REFERENCES

[1] “NS-3 Network Simulator.” URL: https://www.nsnam.org/

[2] “Raiden Network.” URL: https://raiden.network/

[3] “Ripple.” URL: https://www.ripple.com/

[4] “Stellar.” URL: https://www.stellar.org/

[5] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance and
Proactive Recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4, pp.
398–461, nov 2002.

[6] N. Chang and M. Liu, “Revisiting the TTL-based Controlled Flooding
Search,” in Proc. ACM MobiCom, 2004, pp. 85–99.

[7] CoinDesk, “How Will Ethereum Scale?” URL:
https://www.coindesk.com/information/will-ethereum-scale/

[8] D. Delli Gatti, M. Gallegati, B. Greenwald, A. Russo, and J. E. Stiglitz,
“The Financial Accelerator in an Evolving Credit Network,” J. Econ.

Dyn. Control, vol. 34, no. 9, pp. 1627–1650, sep 2010.

[9] L. R. Ford and D. R. Fulkerson, “Maximal Flow Through a Network,”
Can. J. Math., vol. 8, pp. 399–404, jan 1956.

[10] M. Green and I. Miers, “Bolt: Anonymous Payment Channels for
Decentralized Currencies,” in Proc. ACM CCS, 2017, pp. 473–489.

[11] R. Khalil and A. Gervais, “Revive: Rebalancing Off-Blockchain Pay-
ment Networks,” in Proc. ACM CCS, 2017, pp. 439–453.

[12] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros:
A Provably Secure Proof-of-Stake Blockchain Protocol,” in Proc.
CRYPTO, 2017, pp. 357–388.

[13] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A Secure Sharding Protocol For Open Blockchains,” in Proc. ACM
CCS, 2016, pp. 17–30.

[14] G. Malavolta, P. Moreno-Sanchez, A. Kate, and M. Maffei, “SilentWhis-
pers: Enforcing Security and Privacy in Decentralized Credit Networks,”
in Proc. ISOC NDSS, 2017.

[15] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi,
“Concurrency and Privacy with Payment-Channel Networks,” in Proc.

ACM CCS, 2017, pp. 455–471.

[16] S. Misra, G. Xue, and D. Yang, “Polynomial Time Approximations for
Multi-Path Routing with Bandwidth and Delay Constraints,” in Proc.

IEEE INFOCOM, 2009, pp. 558–566.

[17] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008.

[18] J. Poon and V. Buterin, “Plasma: Scalable Autonomous Smart
Contracts Scalable Multi-Party Computation,” Whitepaper, 2017. URL:
http://plasma.io/plasma.pdf

[19] J. Poon and T. Dryja, “The Bitcoin Lightning Network: Scalable Off-
Chain Instant Payments,” Whitepaper, 2016.

[20] S. Popov, “The Tangle,” Whitepaper, 2017. URL:
https://www.iota.org/IOTA Whitepaper.pdf

[21] P. Prihodko, S. Zhigulin, M. Sahno, and A. Ostrovskiy, “Flare: An
Approach to Routing in Lightning Network,” Whitepaper, 2016.
URL: http://bitfury.com/content/5-white-papers-research/whitepaper
flare an approach to routing in lightning network 7 7 2016.pdf

[22] E. Rohrer, J.-F. Laß, and F. Tschorsch, “Towards a Concurrent and
Distributed Route Selection for Payment Channel Networks,” in Proc.
ESORICS Workshop–CBT, 2017, pp. 411–419.

[23] S. Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg, “Settling
Payments Fast and Private: Efficient Decentralized Routing for Path-
Based Transactions,” in Proc. ISOC NDSS, 2018.

[24] M. Spoke and Nuco Engineering Team, “Aion:
The Third-Generation Blockchain Network,” Whitepa-
per, 2017. URL: https://aion.network/downloads/aion.network
technical-introduction en.pdf

[25] Z. Wang and J. Crowcroft, “Quality-of-service routing for supporting
multimedia applications,” IEEE J. Sel. Areas Commun., vol. 14, no. 7,
pp. 1228–1234, 1996.

[26] D. J. Watts and S. H. Strogatz, “Collective Dynamics of Small-World’
Networks,” Nature, vol. 393, no. 6684, pp. 440–442, jun 1998.

https://www.nsnam.org/
https://raiden.network/
https://www.ripple.com/
https://www.stellar.org/
https://www.coindesk.com/information/will-ethereum-scale/
http://plasma.io/plasma.pdf
https://www.iota.org/IOTA_Whitepaper.pdf
http://bitfury.com/content/5-white-papers-research/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
https://aion.network/downloads/aion.network_technical-introduction_en.pdf

