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Abstract—The ever increasing video demands from mobile
users have posed great challenges to cellular networks. To address
this issue, video caching in radio access networks (RANs) has
been recognized as one of the enabling technologies in future
5G mobile networks, which brings contents near the end-users,
reducing the transmission cost of duplicate contents, meanwhile
increasing the Quality-of-Experience (QoE) of users. Inspired
by the emerging software-defined networking technology, recent
proposals have employed centralized collaborative caching among
cells to further increase the caching capacity of the RAN. In
this paper, we explore a new dimension in video caching in
software-defined RANs to expand its capacity. We enable the
controller with the capability to adaptively select the bitrates
of videos received by users, in order to maximize the number
and quality of video requests that can be served, meanwhile
minimizing the transmission cost. To achieve this, we further
incorporate Scalable Video Coding (SVC), which enables caching
and serving sliced video layers that can serve different bitrates.
We formulate the problem of joint video caching and scheduling
as a reward maximization (cost minimization) problem. Based
on the formulation, we further propose a 2-stage rounding-based
algorithm to address the problem efficiently. Simulation results
show that using SVC with collaborative caching greatly improves
the cache capacity and the QoE of users.

Keywords—Software-defined radio access network, collaborative
video caching, Scalable Video Coding, 5G mobile networks

I. INTRODUCTION

The mobile traffic in modern cellular networks has undergone a
drastic growth in the past decade. Mobile video traffic accounts
for more than 50% of the overall mobile data traffic [1]. Such
a high volume of video traffic poses a stringent challenge on
the capacity of mobile networks. To handle this challenge, re-
searchers have proposed to enhance the radio access networks
(RANS) with caching at the network edge [S]], [19]. Each base
station (BS) is equipped with a cache, which stores video
contents based on their popularity. Caching at BSs can enhance
users’ Quality-of-Experience (QoE) in terms of latency and
quality, meanwhile reducing the backhaul usage and energy
usage for duplicate transmissions.

One limitation of the above schemes is the limited cache
storage at each BS. Motivated by the software-defined RANs
(SDRANS) [9]I, [[10], researchers have proposed several col-
laborative caching schemes [8], [11], [12]. In collaborative
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caching, a video request can be served using not only the local
base station’s cache, but also the cached copy at a remote base
station via the wireless backhaul. While this requires real-time
cache placement and flow scheduling in the network, SDRAN
offers such flexibility via dynamic control over the data paths
in the RAN.

In this paper, we explore a new dimension in SDRAN
video caching to increase capacity. Modern video content
providers like YouTube and Netflix commonly offer multiple
bitrate versions per video. Lower bitrate version corresponds
to lower video quality, but has lower storage and bandwidth
requirements. When requesting a video content, a user also
specifies the desired bitrate (quality) of the video. However,
when the network is congested, it may adaptively lower the
bitrate offered to the user, in order to serve as more users.

Traditionally, each bitrate version is offered as a disjoint
stream (data file) to the end-user, and the data of one version
cannot be reused to serve other versions. Therefore, the RAN
needs to cache each bitrate version of the video to serve
different bitrates, which leads to high usage of the RAN cache.
To this end, we propose to incorporate Scalable Video Coding
(SVC) [13]], [16], which enables data reuse among different
video versions. Using SVC, each video can be sliced into
multiple layers (a base layer and several enhancement layers),
and each layer can be streamed independently.

Using SVC, the RAN can cache videos in better granular-
ity: instead of caching the entire file of each bitrate version,
each BS can now opt to cache only a subset of layers of the
video, while fetching other layers from other BSs. On the other
hand, users requesting different bitrates of a video can reuse
the same cached layer of the video, thus reducing the overhead
for caching each bitrate version in full. One drawback is the
additional overhead for coding. However, it has been shown
that the overhead can be bounded below 10% [16].

In this paper, we focus on the joint video caching and
scheduling problem in SDRAN, where we seek to maxi-
mize the number and quality of videos served, meanwhile
minimizing average delay. We first formulate the problem
as an integer linear program (ILP) that incorporates both
resource (cache and backhaul) constraints and specific layering
constraints imposed by SVC. Since this problem is NP-hard
(See [§_IM), we further propose a 2-stage polynomial-time
algorithm. In the first stage, the algorithm decides the caching
of all video layers, then in the second stage it schedules the
dissemination of all requests based on the caching decisions.
Through simulation experiments, we show that using SVC
achieves significant improvement in both RAN capacity and
user QoE. To summarize, our contributions are as follows:

e To the best of our knowledge, we are the first to introduce
SVC for video caching in SDRAN. More specifically, we



combine SVC with collaborative caching to enhance the
video serving capacity of RAN and users’ QoE.

e The joint video caching and scheduling problem is formu-
lated as an ILP that involves both resource constraints and
specific SVC layering constraints.

e We further propose a 2-stage rounding-based polynomial-
time algorithm to determine both video caching and
scheduling solutions.

The rest of this paper is organized as follows. intro-
duces background and related work of RAN caching and SVC.
describes the network service model and the problem
formulation. presents our proposed algorithm in two
stages. shows the performance evaluation of the proposed
method. concludes this paper.

II. BACKGROUND AND RELATED WORK
A. Caching in Mobile Networks

There are three basic schemes for mobile content caching:
core network (CN)-based caching [19], [20], RAN-based
caching [3], [4f, [8], (L1, [12f, (15[, [21], and client-based
caching [6], [[14]], [18]. CN-based caching is currently widely
deployed in mobile networks [[19]. Woo et al. [20] compared
several common caching strategies in CN. However, CN is
basically one hop away from the users than the RAN, and
thus cannot reduce the network traffic at the RAN backhaul.
On the other hand, client-based caching is either subject to
the very limited cache and transmission capacities on user
equipment [14], [18]], or beneficial to only the user itself and
does not reduce network traffic [6]].

Hence most researches focus on content caching in the
RAN. To name a few, Ahlehagh er al. [3], [4] first proposed
two caching policies based on the video popularities within the
cell. Ahlehagh et al. [15] further added processing capability
to each BS, and utilized adaptive bit rate streaming to enhance
the caching capacity. The above works focus on local content
caching in each cell. Xu et al. [21] built a collaborative
caching model for RANs to minimize energy consumption.
Khreishah et al. [11] and Li et al. [[12] used similar program-
ming models to describe the collaborative caching problem,
but solved them using different algorithms. Gharaibeh et al. [8]]
further studied the online problem based on [11]] and [12], and
proposed an algorithm with a provable competitive ratio.

This paper is most related to [11], [[12]] and [[15]]. However,
[11] and [12] do not consider the different bitrate versions
of videos and regard them as different video files, while [15]
does not consider collaboration among BSs. None of them
have considered utilizing SVC to increase the RAN capacity
and enhance users’ QoE, which we study in this paper.

B. Scalable Video Caching

SVC [16] is an extension of the H.264/MPEG-4 AVC video
compression standard. A video file encoded using SVC con-
sists of several operation points (OPs), each corresponding to
a certain bitrate level of the video. In this paper, we assume
that all OPs are linearly dependent, i.e., each higher bitrate OP
is dependent on all the lower bitrate OPs. Each OP is obtained
by dropping some packets from the higher OP’s bitstream.
Hence, a video content consists of multiple layers: a base

layer and several enhancement layers. The base layer encodes
the minimum bitstream required to support the lowest bitrate
version. Each enhancement layer includes all missing packets
needed to offer a higher bitrate, in other words, all packets
dropped from the higher OP’s bitstream to obtain the lower
OP’s bitstream. We leave caching with multi-dimensional SVC
(temporal, spatial and fidelity) as our future work.

Specifically, assume a video contains L OPs, and a user
requests a bitrate corresponding to OP € {1, --- , L}. To fulfill
the request, all layers I’ € {1,--- ,l} are needed to form the
bitstream of OP [. We call this the layering constraint of SVC.

In this paper, we assume that the number of OPs is equal
to the number of bitrates that can be requested by the users.
We will not further elaborate on SVC in this paper, and refer
the reader to [[16] for details.

III. NETWORK MODEL AND PROBLEM STATEMENT

In this paper, we study the joint video caching and scheduling
problem in an SDRAN. In the SDRAN network, a central
controller periodically estimates the maximum concurrent de-
mand of each video in each cell, and runs the video caching
and scheduling algorithm to decide the caching of videos and
scheduling of bitstreams to serve user requests. The estimation
method is not within the scope of this paper. We assume that
the estimation accurately reflects the actual request distribution
in the RAN. In this section, we describe the network service
model, and propose the program formulation of this problem.

A. Network Service Model

An SDRAN consists of BSs B = {By, Ba, -+, By }. Each
BS B; has a cache storage of size c¢;, and is connected to
the CN through a backhaul link, with upstream bandwidth
b¥ and downstream bandwidth b¢. To simplify the problem
formulation, we assume B, represents the Internet CDN,
which has unlimited storage and backhaul bandwidth. It thus
stores the cached copy of every video that may be requested.

For each pair of BSs B; (including the Internet) and
B,, function d;, represents their distance, measured by the
transmission delay from B; to B,. We assume that the delay
between the Internet and any BS is greater than the delay
between any pair of BSs. Therefore, fetching a video from any
BS’s cache would incur lower delay than from the Internet.

There are in total N videos that may be requested, denoted
by V = {V1,V,--- ,Vn}. Using SVC, each video V; can be
sliced into L; layers £; = {1,---,L;}, each corresponding
to a specific bitrate. Two attributes are associated with each
layer | € L;: s denotes the size of layer I, and 3} denotes
the minimum bandwidth required to transmit the layer without
incurring stalling of the playback. Note that due to the layering
constraint of SVC, offering bitrate [ to user requires the
serving of all layers I’ € {1,---,l}. This also affects the
delay incurred by a video request, as it is determined by the
maximum delay incurred by all layers serving that request.

Given the set of current users served by the RAN, the
controller estimates the number of concurrent user requests
for each video content and each bitrate version in each cell.
Formally, we use 97" to denote the estimated number of users
at BS B, that requests video V;’s bitrate version [ or higher,



in other words, the number of users whose request requires
layer [ based on SVC’s layering constraint. For a video layer
requested from B, and served from B;, we call B; the serving
BS, and B, the home BS of the request.

B. Problem Statement

Given the information of BSs, videos and estimated video
requests, the SDRAN controller decides 1) which video layers
are to be cached, 2) where to cache the selected video layers,
3) what is the QoE that users at each BS will get with regard
to their requests, and 4) where should all layers for a given
request be fetched. These decisions are constrained by the
limited resources in the RAN, including limited cache storage
and backhaul bandwidth at each BS. The following integer
program formulates this problem.

Variables:

e x = {z)"'}, where 2! € {0,1} is defined for each BS
B; € BU{By}, video V; €V, and layer | € Lj, denotlng
whether video Vj’s layer l is cached at BS B; (xj’ =1)or
not (J:J t=0);

oz = {z } where 27" 6 {0,--- ,49'} denotes the number
of coples of video V s layer l requested by users from BS
B, that are served from BS B;’s cache;

Objective:
maximize R = ZZ Zrﬂ Zz @)
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Explanations:

e Our objective is measured in terms of both the delay
incurred by the users at each BS and the number of bitrates
(layers) available to the users. Let 7b be the unit reward

for serving user with video V;’s bltrate I, and c? be the
unit cost for incurring delay for serving video V;. The
objective is to maximize the reward for serving users with
high bitrates, while minimizing the incurred delays (defined
n (8) and (9)), shown in (I).

e Constraints (2), (3) and (4) enforce resource limits at
BS B;. Constraint (2) states that all cached items at B;
cannot exceed its cache capacity c¢;. Constraint states
that the total transmission bandwidth of requests targeting
users outside B; cannot exceed its upstream backhaul b}'.
Similarly, Constraint states that all users fetching video
layers from outside its home BS B, is bounded by B,’s
downstream backhaul b?. Note that video layers fetched
from the home BS do not consume its backhaul once the
layer is cached. Bandwidth consumed for retrieving contents
for caching is not considered in this paper.

e Constraint (5) states that a video layer can be fetched from
B; only if B; caches that layer. Constraint (6) states that
the number of served copies of video layers from all BSs
should not exceed the number of users requesting that layer,
in other words, no video layer is transmitted without being
requested by some user. Constraint guarantees that the
number of copies of video V;’s layer I served to users at
BS B, is bounded by the number of served copies of its
preceding layer, thus enforcing the SVC layering constraint
and avoiding unnecessary serving of higher video layers that
cannot turn into higher bitrate versions.

e Constraints and (O) jointly define the aggregate delay
d’J received by all users at BS B, requesting video Vj.
Intermediate variable )\J is defined for each video Vj,
home BS B, and serving 'BS B;, denoting the (minimum)
number of users requesting V; at B, that incur the delay
of d;,, ie., fetching their farthest layer from BS B;. To
deﬁne )\] ,» we further derive a sorted list for each B,
consisting of all potential serving BSs B; € B U {Bo}, in
descending order of their distance d;,, and denote the list
as B, = (BZO,BzQ,n- BZM) Note that i, = ¢, as the
nearest potential serving BS to a cell (user) is always itself
(the home BS). Given B,, Constraint (8)) inductively defines
)\J for each B; along the sorted list B,. Specifically, )\24 y

is deﬁned as the number of users incurring no less delay
than di};»“ taken as the maximum number of users fetching
any layer from B,-; or farther BSs (first term), subtracting
the number of users incurring delay higher than d;. ,, taken
as the sum of users incurring the delay from farther serving
BSs BTL (second term).

e Given Varlables )\J the delay incurred by users requesting
V; at B, is then deﬁned as the sum of delays incurred from
all serving BSs, as shown in Constraint (9).

Note that the above formulation has one non-linear con-
straint: the delay constraint (§). However, the following the-
orem transforms this non-linear constraint into a set of linear
constraints.

Theorem 3.1: Given the above program, for any B, € B,
Vi€V and pe{0,---, M}, Constraint (§) is equivalent to the



following set of constraints:
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Proof: Assume the optimal solution of the original pro-
gram is S* with objective v*, and that of the program after
replacing () with (I0) is S with objective v. We prove
that v = v*. First of all, v > v*, because Inequality (I0)
includes Equation and thus the solution space is enlarged
by the replacement. Assume (to prove by contradiction) that
v > vt Let A, = YO0 )\] — maxiez; {Dh_, f,lb},
and thus Constraint can be rewritten as AJ =0, ‘and
Constraint (T0) as A7 , 2 0. According to ( and . v # v*
can happen only when Ag,,b > 0 for some L, J and p; otherwise
the resulting solution S is also a feasible solution for the
original program, meaning that v < v* which contradicts our
assumption. If so, however, we can construct a new solution .S’
with objective v’, by reducing )\1 ) and increasing A7, af
p+1 < M) by Ap . simultaneously This does not v1olate

Constraint (I0) for ¢, j and p based on the definition of
AJ’ For any p; > p (f exists), Apl ., does not change

due to the equal decrease and increase in ), , and X\,
r

st 11L

for Ve L; (10)
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respectively. No other variable is affected, hence S’ is still a
feasible solution of the program after replacement. And since
we have dzL o> d ., according to the sorting of B3, the value
of dj will not increase between S and S’ in Constraint O,
hence v < v'. Note that after this construction, in S’ we have
AJ = (0. We apply this construction for any Ap , > 0, 1in
1ncreas1ng order of p as in B,, until VAJ = 0. The final S’
is now a fea51ble solution of the 0r1g1nal program and hence
we have v < v/ < v*. This contradicts our assumption that
v > v*, and thus completes the proof. ]

By substituting Constraint (§) with Constraint (T0), the
resulting program is an integer linear program (ILP).

The above problem is NP-hard. A simple reduction is
from the Multiple Unbounded Knapsack problem, which re-
mains N P-complete even when the number of knapsacks is
one [7]. Due to the page limit, in this paper we focus on
designing an efficient algorithm for the problem rather than the
detailed AP-hardness proof. In the next section, we propose
our algorithm.

IV. COORDINATED VIDEO CACHING AND SCHEDULING

Given the hardness of the problem, we seek to find an effective
and efficient algorithm that approaches the optimal solution
in polynomial time. In this section, we propose a 2-stage
rounding-based algorithm for the problem. Our proposed algo-
rithm utilizes the relaxation of the integer program formulation.
In the first stage, the relaxation is used to make effective video
caching decisions based on the user request information. Given
the result of the first stage, the algorithm then fixes the value
of every caching variable in the program, and uses the updated
program to decide the scheduling of user requests.

A. Rounding-based Caching

The first stage is to decide the caching of videos, in other
words, to decide the value of z’ " for any B; € B, V; € V

and [ € £;. To achieve this, we rely on the relaxed linear
program (LP) of the above integer program formulation, where
variables )’ "and z) ! can take continuous values within their
ranges. Solvmg this LP takes only polynomial time. Based on
the resulting (fractional) values of the variables, we further
employ the rounding technique to obtain an integral and
feasible solution for video caching. The algorithm is shown
in Algorithm [I]

Algorithm 1: Caching of video layers at BSs

Input: BSs B, videos V, and estimated requests 1/)? oL

Output: Cach1ng decisions x = {&}’ 3!

lnrtlalize " =0 for VB; € B,V;€V,le L, and
=1 for vVieV,leLly;

2 Form relaxed LP £ and solve using standard method;

3 for VB, e B, VeV, le{l,--- ,L;} do

i .
gil d. . VI
<_E<ETJV' ; _Cj'dz,b'zz‘,t>’

U=l

-

end
Initialize ¢; = ¢; for each B; € B;
Sort all variables 27! in descending order of p’";
for each xﬁ’l in sorted order do

if ¢; > s/ then
@l e 1
11 C; < C; — Sé;
12 end
13 end
14 return X

D-EE- -

The algorithm starts from solving the relaxed program
in polynomial time, which obtains the (fractional) values
of variables x and z. After that, all caching variables are
sorted based on their effectiveness values, denoted by pf’l
The effectiveness value measures how the caching of video
V;’s layer | at BS B; can serve to increase bitrate rewards
of users while minimize delay costs. It is defined as the sum
reward from all (tentatively) served copies of either layer [
or higher layers I’ (which are dependent on layer | due to
the layering constraint) of video V};, minus the possible delay
penalty incurred for those copies, as shown in Line 4] The
higher value a caching decision’s effectiveness is, the better it
contributes to our objective. Hence, we sort all variables xf oL
in descending order of pg’l, and assign xfl =1 as long as
the caching capacity constraint is satisfied in Line [9] and 0
otherwise. Continue this until all variables are assigned, and
we get a feasible (integral) caching solution.

B. Video Scheduling

The second stage algorithm takes the result of Algorithm [I] as
input, and produces a feasible scheduling solution that serves
users with as high bitrate versions and as low delay as possible.
The algorithm is shown in Algorithm [2}

Like in the previous stage, Algorithm [2] first solves the
relaxed program, but with fixed caching decisions X as input,
and obtains the (fractional) values of variables z. Note that we
re-solve the program rather than directly taking the solution
from Algorithm [T} because the rounded caching solution may
affect the second stage. The resulting (fractional) solution is



Algorithm 2: Video scheduling through backhaul

TABLE I: Experiment results with default parameters

Input: BSs B, videos V), estimated requests 1/)17 ’l, and
caching decisions x = {i7"}
Output: Scheduling decisions z = {zjbl}
1 Tnitialize /"' = 0 for VB; € BU {By}, B, €B,
VeV, lel;
2 Form relaxed LP £, and set xfl = le for every mg’l,
then solve £ using standard method;
3 Round sz = szfj to obtain a basic solution;
.l

4 Reduce %", which violates the layering constraint

for each BL and Vj, from i = ig to 4%, and [ = 2 to Ly;
5 Let E? and Bj be the residual upstream and downstream
backhaul at B; respectively;
6 Compute &t ="M 290 for all triples (B,,V},1);

=0 “i,L
7 for &I < min{ ||, E171} increasingly of | do
8 for B; € B, in reversed order such that xf '~ 1 do

. .7y 7d

9 if min{b;,b, } > B! then
10 a < min{[y]!], 171} — g

. u =
11 B < min{b; , b, }/B;
12 b 2 min{a, B);

S —d .

13 Update &7+, b? and b, accordingly;
14 end
15 end
16 end
17 return z

then rounded down to obtain a basic scheduling solution. Note
that during the rounding, the layering constraint may be
violated (the rounded fraction of a lower layer is greater than
the rounded fraction of the higher layer). It is then enforced
by reducing the violating servings, beginning from the second
lowest layers and the farthest BSs, in Line []

Since all variables are rounded down, there may still remain
resources aggregated from the rounded fractions that can serve
more user requests. To utilize these resources, we further
iterate on all videos from the lowest to the highest layers,
and attempt to serve more requests at each layer (Lines [THI6).
Note that BSs in B, are sorted in descending order of delay
to B,, hence the list is traversed in reversed order, in order
to seek the minimum delay given home BS B,. The residual
resources are updated after obtaining the basic solution and
scheduling any further layers not served in the basic solution.
In the final solution, either all requests have been served up
to the desired bitrate, or no layer can be further offered given
the caching solution and the residual backhaul.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
method. The performance is evaluated in two dimensions:
RAN capacity and user QoE. The capacity of the RAN is
measured by the number of active users that can be served
by the system, i.e., the number of users receiving at least the
lowest bitrate version of its requested video. The users’ QoE is
measured by both the average bitrate received each user, and
the average transmission delay incurred by each user. Note
that both bitrate and delay are incorporated in our objective

Combination | Act users | Avg layers | Avg delay

SVC + Collaborative (SC) 6480.9 2.1249 88.31
SVC + Non-collaborative (SS) 6492.1 2.1306 102.14
Non-SVC + Collaborative (NC) 5635.2 2.0077 103.80
Non-SVC + Non-collabor. (NS) 5642.4 2.0092 115.90
No caching (NN) 3201.1 1.2808 143.41

function in (I). The number of active users is implicitly defined
as the number of base layers served for all videos, implying
the number of users receiving at least the lowest bitrate version
of their requested videos.

We use randomly generated RAN environment for eval-
vation. By default, the RAN consists of 15 BSs, and 10000
users uniformly distributed among all BSs. Each BS has cache
capacity ¢; uniformly generated from [500,5000] (MB), and
upstream and downstream backhaul bandwidth b% and b¢ both
uniformly generated from [100,1000] (Mbps). The delays of
fetching video content within local BS’s cache, from other
BS’s cache and from the Internet are uniformly generated from
[5,10] (ms), [20, 50] (ms) and [100, 200] (ms) respectively [12]].
The number of available videos is 5000, with popularity
following a Zipf distribution with exponent v = 0.95, follow-
ing [11]]. Each video has an overall size uniformly generated
from [100,1000] (MB) and overall bandwidth demand from
[0.5,5] (Mbps). Each video has 5 bitrate versions, with equal
probability of being requested. Following [[15]], the five layers
each contains 0.45,0.1,0.12,0.15, 0.18 of packets of the orig-
inal video respectively. To account for the coding overhead of
SVC, each layer imposes an additional 10% overhead on the
packets over the previous layer.

We use the proposed algorithm to evaluate different com-
binations of using SVC and collaborative caching in SDRAN
(Table [[). The formulation and the algorithm are modified
accordingly to adapt to the different combinations. The mod-
ifications are trivial, hence we omit the details in this paper.
In the objective function, we set the unit bitrate reward as
7“?.,1 = 1000 for each video layer, and unit delay penalty as

c;l =1 for all videos.

The algorithm is implemented using C++. The Gurobi
Optimizer [2] is used to solve the linear programs in the
algorithm. All experiments are conducted on a Ubuntu Linux
PC, with 3.4GHz Quad-Core CPU and 16GB memory. Each
experiment is repeated for 20 times under the same experiment
setting, and the results are taken as the average of all runs.

Table [I] shows the comparison of different combinations
of collaborative caching and SVC. As shown, both SVC and
collaborative caching can increase the capacity of the RAN
and the users’ QoE. Compared to Non-SVC, using SVC
achieves about 15% increase in the number of active users
served and decrease in average delay. Using collaborative
caching, significant delay reduction can be achieved, but the
number of active users and the average bitrate do not increase.
This is because in both collaborative and non-collaborative
caching, the bottleneck is basically the downstream backhaul
at the home BSs, which limits the number of requests that
can be served. The slight decrease in the number of active
users or average layers is because our algorithm trades-off
a little capacity to achieve delay reduction for users when
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Fig. 1: Experiment with increasing user demands.

collaborative caching enables such adjustments.

Fig. [T] shows the comparison of different combinations
when facing increasing user demands. Both collaborative and
non-collaborative caching with SVC achieve a high number of
active users and average layers. The number of active users
of the four caching solutions overlap when the user load is
small, because all of them can serve almost all user requests.
When the user load increases, the gap between using SVC and
not using SVC increases, because SVC enhances the RAN
capacity and thus can serve more users with more layers
when congested. On the other hand, SVC + Collaborative
achieves the lowest average delay. Using SVC can decrease
delay compared to Non-SVC, because more layers can be
fetched from remote BSs rather than from the Internet. Note
that the delay decreases as the load increases with all four
caching-based solutions, because as the number of requests
increases, there are more choices for the algorithm to serve
those requests that may incur low delay. All caching-based
solutions result in much larger capacity and lower delay than
fetching all videos from the Internet (NN).

To summarize, the simulation results show that both SVC
and collaborative caching can lead to improved RAN capacity
and user QoE. The combination of SVC and collaborative
caching achieves the best results compared to using either SVC
or collaborative caching alone, or other combinations.

VI. CONCLUSIONS

In this paper, we explored how to use SVC and collaborative
caching to enhance the video caching capacity of an SDRAN
and the user QoE. Using SVC, each video bitrate version is
served as a set of layers rather than a single video bitstream.
Different layers of a video can be cached at and fetched
from caches at different BSs, which enables the flexibility of
video caching and scheduling, and avoids duplicate caching
of data of the same video. We formulated the joint video
caching and scheduling problem in an SDRAN as an integer
linear program. Based on the program, we proposed a 2-stage
rounding-based algorithm that approaches the optimal solution
efficiently. Simulation experiments show that combining SVC
with collaborative caching can greatly improve the SDRAN
capacity, as well as the QoE received by end-users.
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