Data-Driven Edge Resource Provisioning for Inter-Dependent Microservices with Dynamic Load

Ruozhou Yu, North Carolina State University Szu-Yu Lo, Fangtong Zhou, North Carolina State University Guoliang Xue, Arizona State University

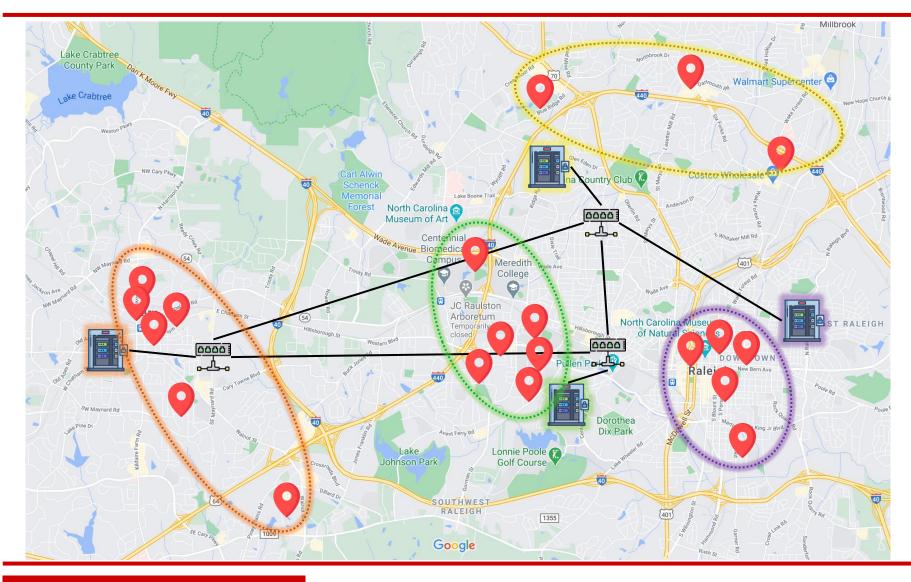
Background and Motivation

System Modeling

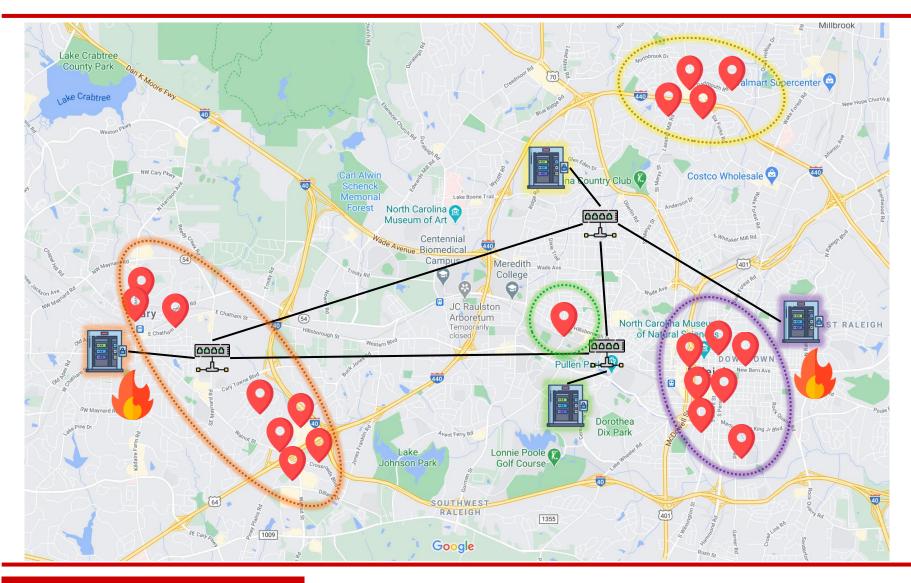
Solution Design

Performance Evaluation

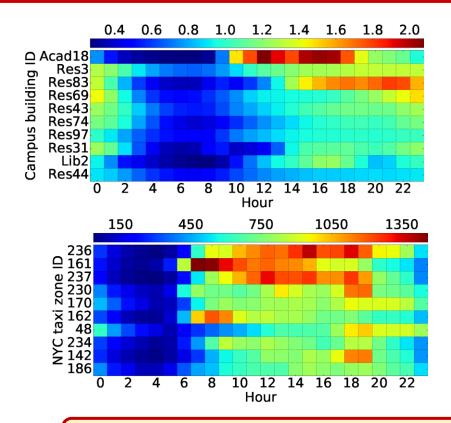
Geo-Distributed Services & Edge Computing



Time-Varying Demands in Geo-Distributed Apps



Patterns in Real-world Datasets [1]



Dartmouth College Wireless APs

- Top 10 APs with highest loads
- Load: avg. # devices / hour
- Averaged over a year (9/2002-9/2003)

NYC Yellow Taxi 2018

- Top 10 zones w/ most drop-offs
- Load: avg. # passenger drop-offs
- Averaged over a year

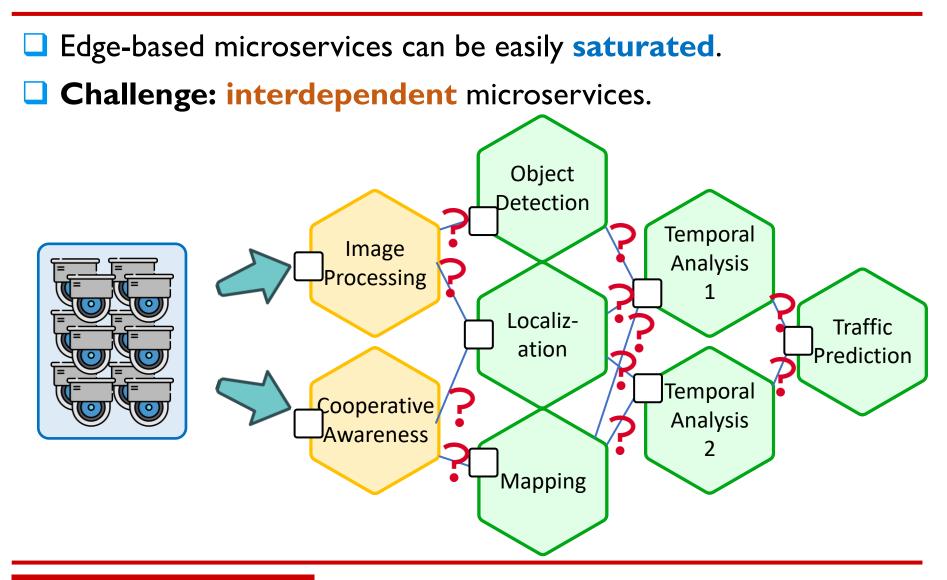
Observation 1: Non-i.i.d. demand distributions across time & locations.

Observation 2: Repeating / seasonal patterns in temporal domain.

NC STATE UNIVERSITY

[1] Yu, Ruozhou, Guoliang Xue, Yinxin Wan, Jian Tang, Dejun Yang, and Yusheng Ji. "Robust resource provisioning in time-varying edge networks." In *Proceedings of the Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing*, pp. 21-30. 2020.

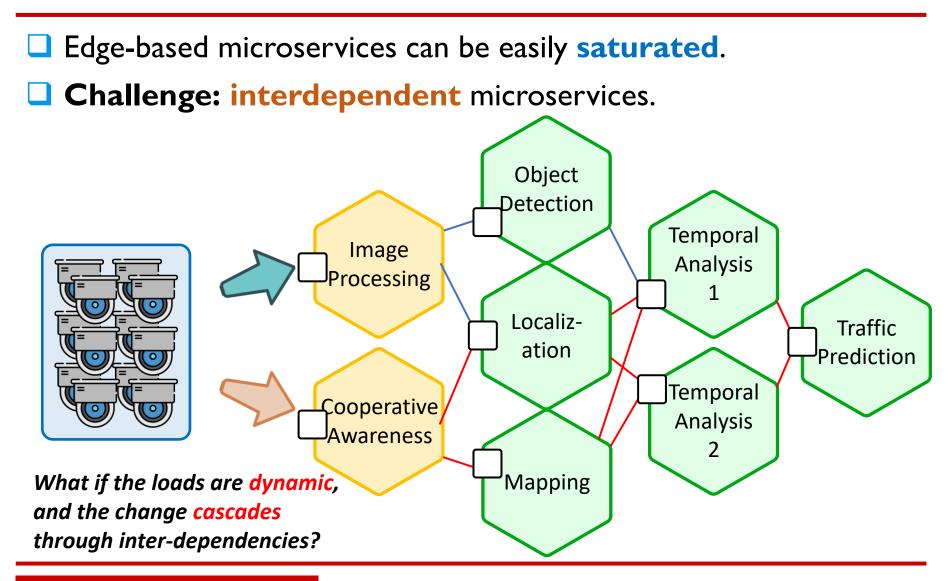
The Microservice Load Balancing Problem [2]



NC STATE UNIVERSITY

[2] Yu, Ruozhou, Vishnu Teja Kilari, Guoliang Xue, and Dejun Yang. "Load balancing for interdependent IoT microservices." In IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pp. 298-306. IEEE, 2019.

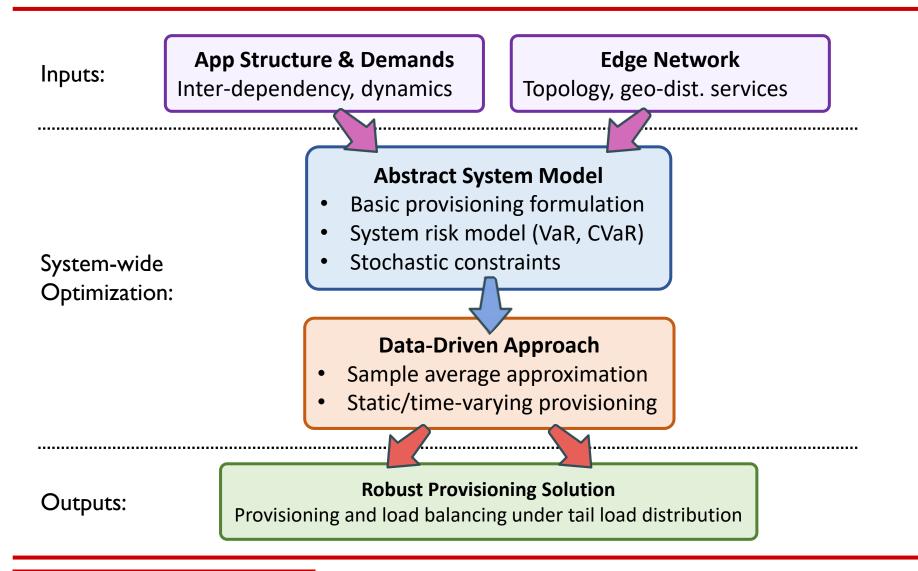
The Microservice Load Balancing Problem [2]



NC STATE UNIVERSITY

[2] Yu, Ruozhou, Vishnu Teja Kilari, Guoliang Xue, and Dejun Yang. "Load balancing for interdependent IoT microservices." In IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pp. 298-306. IEEE, 2019.

Methodology Overview



Background and Motivation

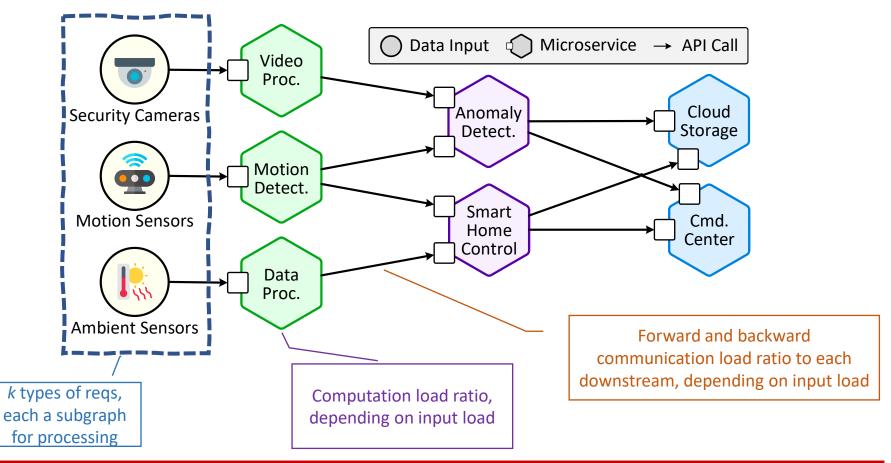
System Modeling

Solution Design

Performance Evaluation

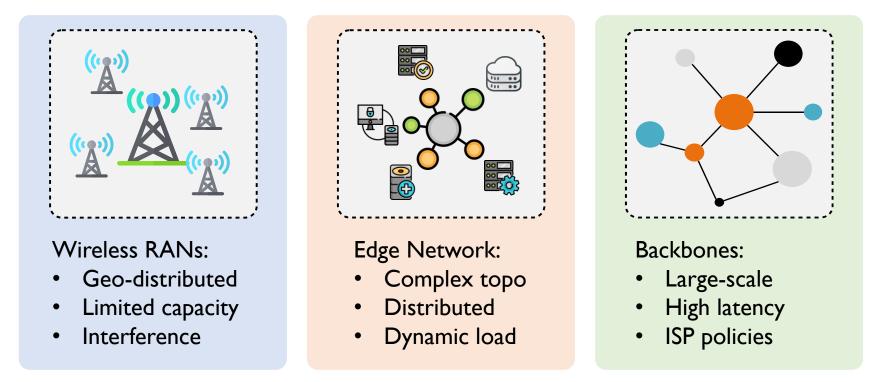
Application with Interdependent Microservices

- General DAG-based application graph (<u>App-Graph</u>).
 - Captures complex interdependencies, unlike existing line graph-based models.



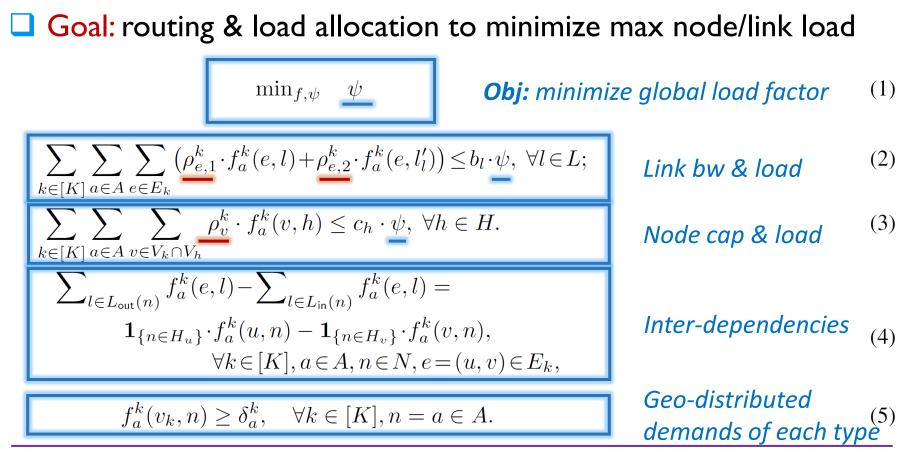
Edge Network: A General Model

Challenge: heterogeneous network environments



- Model: general directed graph G=(N, L), with edge nodes H and APs A
 - Weights: link bandwidth, edge node capacity, <u>deployed microservices instances</u>

Objective and Overall Formulation



 \Box But $\{\delta_a^k\}$ are random and time-varying...

Background and Motivation

System Modeling

Solution Design

Performance Evaluation

SO and CVaR

- Stochastic Optimization (SO): optimize a function in presence of randomness (random objective and/or constraints)
 - ✤ Traditional approach: expectation optimization / constraints min_{X∈F} E[R] or $AX \ge E[R]$
 - Issue: unbounded risk in rare but unfortunate scenarios
 - E.g., abnormal demands due to public events, rare large-scale failures, ...
 - How to model these unfortunate scenarios?
 - Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR):
 - Widely used in economics and finance
 - \succ VaR_α(R) = min { c ∈ ℝ | R does not exceed c with at least α prob. }
 - $\succ CVaR_α(R) = E[R | R ≥ VaR_α(R)]$
 - **\Box** Expectation of R in the worst (1- α) scenarios
 - Our approach: optimize with CVaR constraints

$$f_a^k(v_k, n) \ge \mathbf{CVaR}_{\alpha}(\delta_a^k), \ \forall k \in [K], n = a \in A.$$

Transformation and Data-Driven Approach

Challenge I: CVaR not written in closed-form
Technique: LP transformation by Rockafella & Uryasev

$$\operatorname{CVaR}_{\alpha}(\mathbf{R}) = \min_{r} \left\{ r + \frac{1}{1-\alpha} \mathbb{E}[(\mathbf{R}-r)^{+}] \right\}, \quad (9)$$

• A convex optimization problem given α .

 □ Challenge 2: unknown distributions to random variables
 □ Technique: Sample Average Approximation (SAA)
 ♦ *I.i.d. Samples:* observed demand data in historical periods.
 ♦ {δ^k_a} expanded to {δ^{k,i}_a} for i = 1 ... N samples.
 CVaR_α(δ^k_a) ≈ min _r {r + 1/(1-α) 1/N Σ^N_{i=1}(δ^{k,i}_a - r)⁺}. (10)

Background and Motivation

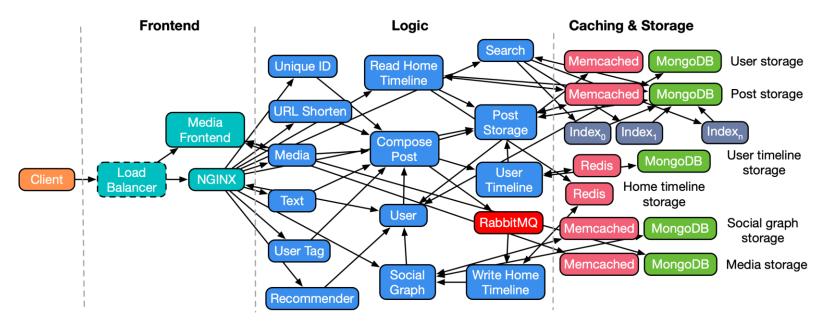
System Modeling

Solution Design

Performance Evaluation

Simulation Setting - Application

Social Network (SN) from DeathStarBench [3]



- 23 microservices, 3 types of workloads (compose-post, read-home-timeline, read-user-timeline) profiled.
- Implemented and profiled for actual communication load (# bytes); computation load/capacity synthesized based on communications.

NC STATE UNIVERSITY

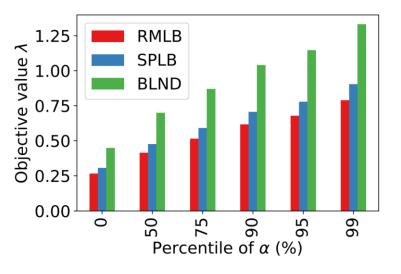
[3] Gan, Yu, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki, Ariana Bruno et al. "An open-source benchmark suite for microservices and their hardware-software implications for cloud & edge systems." In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 3-18. 2019.

Simulation Settings – Demand & Network

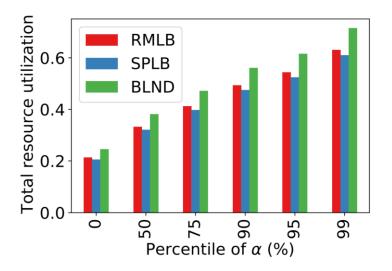
Settings

- Dataset: NYC Yellow Taxi 2018
 - I2 months of Taxi pick-up/drop-off data (~II2 million taxi trips)
 - Picked 20 most popular zones out of 262 (55% of all demands)
 - Mapped demands (drivers/passengers, pick-up/drop-off) to SN requests
 - > 20% training (optimization) & 80% testing (deployment)
- Synthetic Data
 - > Random topologies: Watts-Strogatz with k = 4 and p = 0.3
 - Each microservice deployed on 20% random edge nodes
 - Network conditions: IGbps links, 2.5Gbps computation capacity (normalized)
- ♦ $\alpha = 0.95$ (CVaR confidence)
- Comparison: Shortest Path-based Heuristic, and Blind Load Balancing Heuristic

Selected Experiment Results



(a) Max load factor λ in training

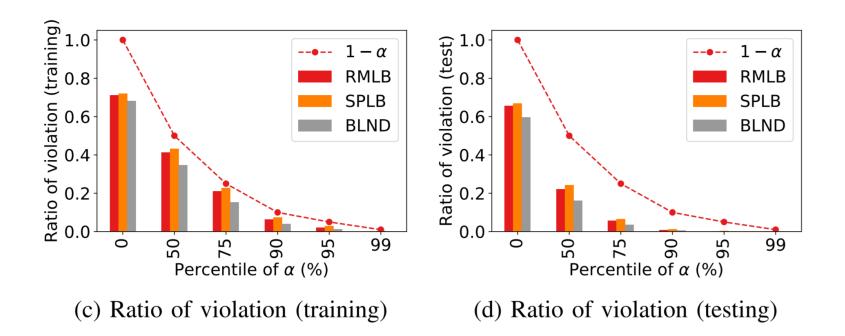


(b) Total edge resource consumption

Maximum Load (Resource Provisioning)

• RMLB (our formulation) achieves best inter-dependency-aware provisioning. Other algorithms result in higher maximum load, and lower/higher total load.

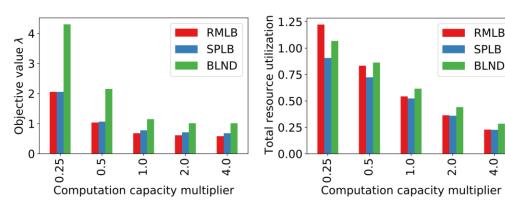
Selected Experiment Results



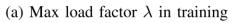
Robustness (Actual Demands)

- We provisioned for the training set (left), with bounded ratio of load violation.
- In the test deployment, we observe similar (lower) ratio of load violation.
- The (1α) percentile is never violated, depending on our setting of α .

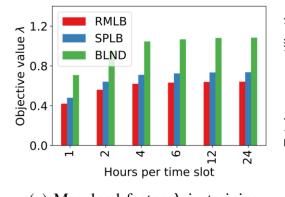
More Results in Paper

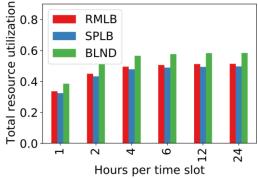


With computation vs. network bottlenecks

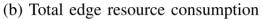


(b) Total edge resource consumption





(a) Max load factor λ in training



With/without timevarying provisioning

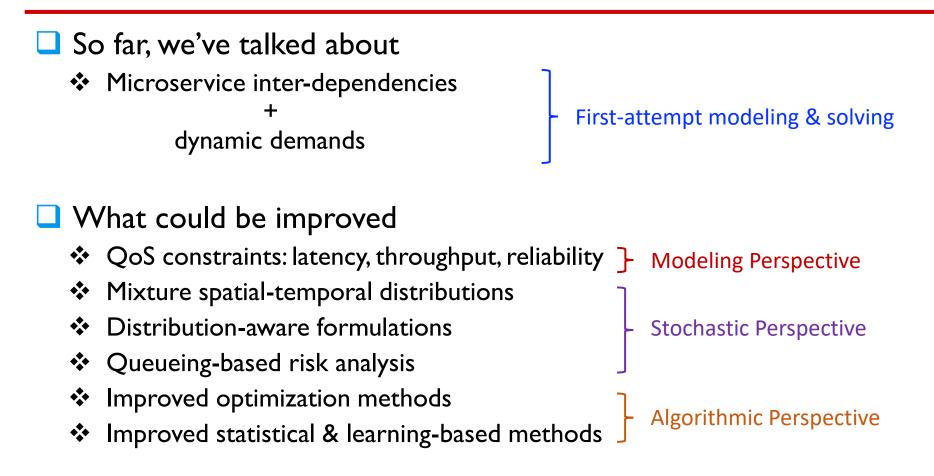
Background and Motivation

System Modeling

Solution Design

Performance Evaluation

Other Perspectives, Conclusions



Conclusions: app-aware, robust computing & networking.

Thank you very much! Q&A?