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P 2 o & 2 Millbrook
| it a f PTTLE -...--.---.-., $
Lake Crabtree { TR & otDrookDr 2
County Park 06”4' S 5 e,
41% 7 o, Walmart Supéreenter @
(S \ s ot
\ove Crabtree K e i 5 Tt ewnopeChHR
o] S\ e e % 4 7 g W
$ K & 9 & *
" Ao oA 9, s ) & .
> Westo® "f/,” i’ ] f;l -:
4 g 2 &
5 2 o
o
& 2 2
NWC, . S N o " awagy £5%
W S Carl/Alwin 5 S Costeo Wholesate |
2 Ey 0
8 \i 40/ Schenck & R :
& Memorial Lake Boone Trail g 3
@ ac8®" ®. z
S Forest  North Carolina hoes g g
| Museum of Art 2 &
2 1 >
% ey W e 6 © Whigier Ml RO - x
3 kY Yene-Biomedic A <
> Cam i 5
3, 4 o .a Meredith ‘U;me Ave
5 B s ity Rg College % @
%, £ 65 & o
_E) JC Raulston / —
% Arboretum ’ Nf - =S
= % Temporarily North Carolina#use W, T RALEIGH
Sborough o ] * closed of Natur.aT n
Westem 8 &
5
= : DO WNS
% . lei New Bern Ave 18
i a m Ave .
2404 5
‘ )QO/EQH
Pogle’

z
SW Maynard Rd %
H
Pine D¢ 3 2 Dorothea
2% =z S Avent Ferry RO Dix Park
£ >
s Lake Lonnie Poole @ & 3
s Johnson Park 5 Golf Course o N sl
S § =
5 Lo \
3
SOUTHWEST w
2
RALEIGH Y kg
o [ \‘““;Ab
S c,,,,% g S;« o
% Google ) ] 7 2
" T Rush g, & S

NC STATE UNIVERSITY




Time-Varying Demands in Geo-Distributed Apps
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Patterns in Real-world Datasets [
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Observation 1: Non-i.i.d. demand distributions across time & locations.
Observation 2: Repeating / seasonal patterns in temporal domain.

[1] Yu, Ruozhou, Guoliang Xue, Yinxin Wan, Jian Tang, Dejun Yang, and Yusheng Ji. "Robust resource
N c STATE U N | V E R S | TY provisioning in time-varying edge networks." In Proceedings of the Twenty-First International
Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and
Mobile Computing, pp. 21-30. 2020.




The Microservice Load Balancing Problem 2

) Edge-based microservices can be easily saturated.

J Challenge: interdependent microservices.
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The Microservice Load Balancing Problem 2

) Edge-based microservices can be easily saturated.

J Challenge: interdependent microservices.
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What if the loads are dynamic, Mapping

and the change cascades
through inter-dependencies?
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N c STATE U N | V E R S | TY interdependent loT microservices." In [EEE INFOCOM 2019-1EEE Conference on Computer 7
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Methodology Overview

App Structure & Demands Edge Network
Inter-dependency, dynamics Topology, geo-dist. services

System-wide

Abstract System Model
Basic provisioning formulation
System risk model (VaR, CVaR)
Stochastic constraints

Optimization:

s
A4
Data-Driven Approach

Sample average approximation
Static/time-varying provisioning

Outputs: Provisioning and load balancing under tail load distribution

Robust Provisioning Solution

NC STATE UNIVERSITY




Outlines

Background and Motivation

System Modeling

Solution Design

Performance Evaluation

Discussions, Future Work and Conclusions

NC STATE UNIVERSITY




Application with Interdependent Microservices

J General DAG-based application graph (App-Graph).

s Captures complex interdependencies, unlike existing line graph-based models.
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Edge Network: A General Model

J Challenge: heterogeneous network environments

-----------------------------------------------------------------------------

Wireless RANSs: Edge Network: Backbones:

* Geo-distributed * Complex topo * Large-scale

* Limited capacity * Distributed * High latency
* Interference * Dynamic load * ISP policies

J Model: general directed graph G=(N, L), with edge nodes H and APs A

“* Weights: link bandwidth, edge node capacity, deployed microservices instances

NC STATE UNIVERSITY 11




Objective and Overall Formulation

J Goal: routing & load allocation to minimize max node/link load
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mingy Y Obj: minimize global load factor (1)

Link bw & load (2)

Node cap & load (3)

Inter-dependencies )

Geo-distributed
demands of each type

) But {§*} are random and time-varying...
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SO and CVaR

J Stochastic Optimization (SO): optimize a function in
presence of randomness (random objective and/or constraints)

¢ Traditional approach: expectation optimization / constraints
minxef IE[R] or AX = [E[R]
¢ Issue: unbounded risk in rare but unfortunate scenarios
» E.g.,abnormal demands due to public events, rare large-scale failures, ...

<

L)

* How to model these unfortunate scenarios?
Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR):
» Widely used in economics and finance
» VaR (R) = min { c € R | R does not exceed c with at least «a prob. }
» CVaR,(R)=E[R|R =VaR, (R) ]
L Expectation of R in the worst (1-@) scenarios

» Our approach: optimize with CVaR constraints

fa(vg,n) > CVaR,(8)), Vke[K],n=a€A.

a
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Transformation and Data-Driven Approach

) Challenge |: CVaR not written in closed-form
J Technique: LP transformation by Rockafella & Uryasev

CVaR,(R) = m,rin {'r'—i— . EQE[(R—T)+]} 7 9)

¢ A convex optimization problem given a.

J Challenge 2: unknown distributions to random variables

) Technique: Sample Average Approximation (SAA)

s Lid Samples:observed demand data in historical periods.
< {6X} expanded to {5§'i} for i = 1...N samples.
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Simulation Setting - Application

J Social Network (SN) from DeathStarBench [3;

Frontend Logic

Caching & Storage
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% 23 microservices, 3 types of workloads (compose-post, read-home-timeline,
read-user-timeline) profiled.

’0

»* Implemented and profiled for actual communication load (# bytes);
computation load/capacity synthesized based on communications.

[3] Gan, Yu, Yangi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki, Ariana Bruno et al. "An
N c STATE U N | V E R S | TY open-source benchmark suite for microservices and their hardware-software implications for cloud 17
& edge systems." In Proceedings of the Twenty-Fourth International Conference on Architectural

Support for Programming Languages and Operating Systems, pp. 3-18. 2019.




Simulation Settings - Demand & Network

] Settings

+» Dataset: NYC Yellow Taxi 2018

» 12 months of Taxi pick-up/drop-off data (~112 million taxi trips)

» Picked 20 most popular zones out of 262 (55% of all demands)

» Mapped demands (drivers/passengers, pick-up/drop-off) to SN requests
» 20% training (optimization) & 80% testing (deployment)

¢ Synthetic Data
» Random topologies: Watts-Strogatz with k =4 and p = 0.3
» Each microservice deployed on 20% random edge nodes
» Network conditions: | Gbps links, 2.5Gbps computation capacity (normalized)

* a = 0.95 (CVaR confidence)

¢ Comparison: Shortest Path-based Heuristic, and Blind Load Balancing
Heuristic

NC STATE UNIVERSITY

18



Selected Experiment Results
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* RMLB (our formulation) achieves best inter-dependency-aware provisioning.
Other algorithms result in higher maximum load, and lower/higher total load.
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Selected Experiment Results
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Robustness (Actual Demands)
* We provisioned for the training set (left), with bounded ratio of load violation.
* Inthe test deployment, we observe similar (lower) ratio of load violation.
* The (1 — a) percentile is never violated, depending on our setting of a.
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More Results in Paper
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Other Perspectives, Conclusions

] So far, we've talked about

\/

*¢ Microservice inter-dependencies
+

dynamic demands

First-attempt modeling & solving

] What could be improved

X QOS constraints: Iatency, thl’OUghPUt I"ellablllt)’ } Modeling Perspective
Mixture spatial-temporal distributions

0

e

%

e

%

Distribution-aware formulations -~ Stochastic Perspective

e

%

Queueing-based risk analysis

e

*

Improved optimization methods i o _
- Algorithmic Perspective

e

*

Improved statistical & learning-based methods _

J Conclusions: app-aware, robust computing & networking.
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Thank you very much!
Q&A?
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