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Geo-Distributed Services & Edge Computing
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Time-Varying Demands in Geo-Distributed Apps
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Patterns in Real-world Datasets [1]
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Dartmouth College Wireless APs
• Top 10 APs with highest loads
• Load: avg. # devices / hour
• Averaged over a year (9/2002-9/2003)

NYC Yellow Taxi 2018
• Top 10 zones w/ most drop-offs
• Load: avg. # passenger drop-offs
• Averaged over a year

Observation 1: Non-i.i.d. demand distributions across time & locations.

Observation 2: Repeating / seasonal patterns in temporal domain.

[1] Yu, Ruozhou, Guoliang Xue, Yinxin Wan, Jian Tang, Dejun Yang, and Yusheng Ji. "Robust resource 
provisioning in time-varying edge networks." In Proceedings of the Twenty-First International 
Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and 
Mobile Computing, pp. 21-30. 2020.



The Microservice Load Balancing Problem [2]

❑ Edge-based microservices can be easily saturated.

❑ Challenge: interdependent microservices.
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What if the loads are dynamic, 
and the change cascades
through inter-dependencies?



Methodology Overview
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App Structure & Demands
Inter-dependency, dynamics

Edge Network
Topology, geo-dist. services

Abstract System Model
• Basic provisioning formulation
• System risk model (VaR, CVaR)
• Stochastic constraints

Data-Driven Approach
• Sample average approximation
• Static/time-varying provisioning

Robust Provisioning Solution
Provisioning and load balancing under tail load distribution

Inputs:

System-wide

Optimization:

Outputs:
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Application with Interdependent Microservices

❑ General DAG-based application graph (App-Graph).
❖ Captures complex interdependencies, unlike existing line graph-based models.
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Edge Network: A General Model

❑ Challenge: heterogeneous network environments

❑ Model: general directed graph G=(N, L), with edge nodes H and APs A

❖ Weights: link bandwidth, edge node capacity, deployed microservices instances
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Wireless RANs:

• Geo-distributed

• Limited capacity

• Interference

Backbones:

• Large-scale

• High latency

• ISP policies

Edge Network:

• Complex topo

• Distributed

• Dynamic load



Objective and Overall Formulation

❑ Goal: routing & load allocation to minimize max node/link load

❑ But {𝛿𝑎
𝑘} are random and time-varying…
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Obj: minimize global load factor

Link bw & load

Node cap & load

Inter-dependencies

Geo-distributed 
demands of each type
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SO and CVaR

❑ Stochastic Optimization (SO): optimize a function in
presence of randomness (random objective and/or constraints)
❖ Traditional approach: expectation optimization / constraints

or

❖ Issue: unbounded risk in rare but unfortunate scenarios

➢ E.g., abnormal demands due to public events, rare large-scale failures, …

❖ How to model these unfortunate scenarios?

❖ Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR):

➢ Widely used in economics and finance

➢ VaR𝛼(R) = min { c ∈ ℝ | R does not exceed c with at least 𝛼 prob. }

➢ CVaR𝛼(R) = 𝔼[ R | R ≥ VaR𝛼(R) ]

❑ Expectation of R in the worst (1-𝛼) scenarios

❖ Our approach: optimize with CVaR constraints
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min𝒳∈ℱ 𝔼[ 𝑅 ] 𝐴𝒳 ≥ 𝔼[ 𝑅 ]



Transformation and Data-Driven Approach

❑ Challenge 1: CVaR not written in closed-form

❑ Technique: LP transformation by Rockafella & Uryasev

❖ A convex optimization problem given 𝛼.

❑ Challenge 2: unknown distributions to random variables

❑ Technique: Sample Average Approximation (SAA)

❖ I.i.d. Samples: observed demand data in historical periods.

❖ {𝛿𝑎
𝑘} expanded to {𝛿𝑎

𝑘,𝑖} for 𝑖 = 1…𝑁 samples.

15



Outlines

16

Background and Motivation

System Modeling

Solution Design

Performance Evaluation

Discussions, Future Work and Conclusions



Simulation Setting - Application

❑ Social Network (SN) from DeathStarBench [3]

❖ 23 microservices, 3 types of workloads (compose-post, read-home-timeline, 
read-user-timeline) profiled.

❖ Implemented and profiled for actual communication load (# bytes); 
computation load/capacity synthesized based on communications.
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[3] Gan, Yu, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki, Ariana Bruno et al. "An 

open-source benchmark suite for microservices and their hardware-software implications for cloud 
& edge systems." In Proceedings of the Twenty-Fourth International Conference on Architectural 
Support for Programming Languages and Operating Systems, pp. 3-18. 2019.



Simulation Settings – Demand & Network

❑ Settings
❖ Dataset: NYC Yellow Taxi 2018

➢ 12 months of Taxi pick-up/drop-off data (~112 million taxi trips)

➢ Picked 20 most popular zones out of 262 (55% of all demands)

➢ Mapped demands (drivers/passengers, pick-up/drop-off) to SN requests

➢ 20% training (optimization) & 80% testing (deployment)

❖ Synthetic Data

➢ Random topologies:  Watts-Strogatz with k = 4 and p = 0.3

➢ Each microservice deployed on 20% random edge nodes

➢ Network conditions: 1Gbps links, 2.5Gbps computation capacity (normalized)

❖ 𝛼 = 0.95 (CVaR confidence)

❖ Comparison: Shortest Path-based Heuristic, and Blind Load Balancing 
Heuristic
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Selected Experiment Results
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Maximum Load (Resource Provisioning)
• RMLB (our formulation) achieves best inter-dependency-aware provisioning. 

Other algorithms result in higher maximum load, and lower/higher total load.



Selected Experiment Results
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Robustness (Actual Demands)
• We provisioned for the training set (left), with bounded ratio of load violation.
• In the test deployment, we observe similar (lower) ratio of load violation.
• The (1 − 𝛼) percentile is never violated, depending on our setting of 𝛼.



More Results in Paper
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With/without time-
varying provisioning

With computation vs. 
network bottlenecks
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Other Perspectives, Conclusions

❑ So far, we’ve talked about
❖ Microservice inter-dependencies 

+ 
dynamic demands

❑ What could be improved
❖ QoS constraints: latency, throughput, reliability

❖ Mixture spatial-temporal distributions

❖ Distribution-aware formulations

❖ Queueing-based risk analysis

❖ Improved optimization methods

❖ Improved statistical & learning-based methods

❑ Conclusions: app-aware, robust computing & networking.
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First-attempt modeling & solving

Modeling Perspective

Stochastic Perspective

Algorithmic Perspective



Thank you very much!
Q&A?
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