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Abstract—This paper studies how to provision edge com-
puting and network resources for complex microservice-based
applications (MSAs) in face of uncertain and dynamic geo-
distributed demands. The complex inter-dependencies between
distributed microservice components make load balancing for
MSAs extremely challenging, and the dynamic geo-distributed
demands exacerbate load imbalance and consequently conges-
tion and performance loss. In this paper, we develop an edge
resource provisioning model that accurately captures the inter-
dependencies between microservices and their impact on load
balancing across both computation and communication resources.
We also propose a robust formulation that employs explicit risk
estimation and optimization to hedge against potential worst-
case load fluctuations, with controlled robustness-resource trade-
off. Utilizing a data-driven approach, we provide a solution that
provides risk estimation with measurement data of past load geo-
distributions. Simulations with real-world datasets have validated
that our solution provides the important robustness crucially
needed in MSAs, and performs superiorly compared to baselines
that neglect either network or inter-dependency constraints.

Keywords—Edge computing, microservice, load balancing, re-
source provisioning, robustness, data-driven

I. INTRODUCTION

Modern digital applications have grown significantly in scale
and complexity. Consequently, the traditional monolithic archi-
tecture is no longer suitable for modern applications that
require big data processing, rapid development, and dynamic
deployment. By breaking a monolithic application into loosely
coupled microservices, an application can achieve scalable
and flexible distributed processing of external data with high
performance and reliability. Furthermore, microservices can
prospectively be combined with edge computing to enable low-
latency, high-throughput and reliable computing that satisfies
the stringent performance requirements of modern applica-
tions, including but not limited to autonomous vehicles, social
media, smart city, smart healthcare, etc. Due to their great
potential, microservices have received significant attention
from both academia and industry in recent years.

In a microservice-based application (MSA), a user request
is processed by a set of inter-dependent microservices. More
precisely, each microservice may need to issue API calls to
other microservices when processing an in-coming user re-
quest. When microservices are deployed distributedly, process-
ing of a request will involve both computation by microservice
instances on distributed nodes, and communications between
these instances for data transfer. A critical challenge in mi-
croservice management is thus to disentangle and accurately
model these inter-dependencies, to satisfy various performance
goals of application owners and/or edge computing provider.
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This paper studies microservice management in the view of
edge resource provisioning and microservice load balancing.
To ensure high performance of an MSA, edge provider needs to
jointly provision computing and network resources, and guide
the MSA’s load balancing behavior, to minimize congestion
when processing user requests. This is non-trivial due to mi-
croservice inter-dependencies, which will lead to imbalanced
load if naive load balancing is employed [1], [2]. Additionally,
real-world demands are both dynamic and time-varying. Static
load balancing as in existing work [2] could result in high
congestion if demand dynamics are not tackled proactively.

To address these challenges, we first propose an accurate
model that formulates microservice load balancing as a linear
program (LP) with static inputs, which captures the impact
of inter-dependencies on resource sharing between co-located
microservice instances, as well as between inter-microservice
communications on shared network links. The ability to cap-
ture both computing resource and network bandwidth sharing
is lacking in existing work [2]. Then, we further propose a
novel robust formulation for proactive risk estimation and op-
timization against the dynamic demands, based on conditional
value-at-risk (CVaR) which is a popular risk management tool
in economics and finance. To address the robust resource
provisioning problem, we propose a data-driven approach for
approximating CVaR with historical demand data for the target
MSA, with convergence guarantee when the amount of avail-
able data approaches infinity. To evaluate its performance, we
conducted simulations based on profiling of a real-world MSA
and real-world demand traces. Results have shown the superior
performance of our robustness solution when facing adverse
demand fluctuations, and when compared to two baselines that
neglect certain network- or inter-dependency-constraints. To
summarize, our main contributions include:
• We propose a computing-network load balancing model

for inter-dependent microservices in a general edge net-
work, filling a gap in existing network-oblivious solutions.

• We propose a robust edge resource provisioning formu-
lation based on the load balancing formulation, which
explicitly hedges against worst-case demand fluctuations
with proactive resource provisioning. The formulation
enables flexible trade-off between solution robustness and
resource consumption controlled by the edge provider.

• We present extensive simulation results with real-world
datasets to show the superior performance of our solution.

The rest of this paper is organized as follows. Sec. II
discusses related work. Sec. III describes our system model and
the basic MSA load balancing formulation. Sec. IV explains
the concept of CVaR and details our robust formulation. Sec. V
shows evaluation results. Sec. VI concludes this paper.

II. BACKGROUND AND RELATED WORK

Microservices. Microservices are widely used in modern digi-
tal applications, ranging from large-scale, cloud-based applica-



tions such as Amazon AWS, Netflix and Twitter [3] to internet-
of-things, smart city, or connected industry scenarios [4], [5].
The cloud container technology is behind the migration from a
monolithic to a microservice-based application architecture by
many companies [6], and substantial work has been done on
microservice management in the cloud [1], [7], [8]. Recently,
the combination of edge computing and microservices has been
proposed, showing strong support for performance-stringent
applications [2], [9]–[11]. Among these efforts, several have
recognized the complexity brought by microservice inter-
dependencies and its impact on resource management [2], [8],
[10]. A majority of such efforts, though, neglect networking as
an important factor affecting the performance of microservices.
Edge computing. Edge resource management is a proliferating
area due to the limited and expensive edge resources, with
many efforts addressing mobile offloading [12], [13], resource
allocation [14], resource provisioning [15], service deploy-
ment [9], edge caching [16], task scheduling and dispatch-
ing [17], [18], etc. Among these, [2] employs a model similar
to ours when addressing load balancing for microservices with
complex inter-dependencies. However, [2] considers neither
network load balancing (it only focuses on load balancing
across computing nodes), nor demand dynamics in the edge
network, both being unique and critical aspects of edge com-
puting. This motivates us to develop a joint computing-network
resource provisioning solution for microservice load balancing,
and explicitly incorporate robustness into the solution.
Robustness. Both proactive and reactive mechanisms have
been proposed for robust system design, with the former
offering better robustness than the latter at the cost of increased
resource redundancy. As edge applications are performance-
oriented, proactive mechanisms ensure that applications incur
minimal performance degradation due to adverse events such
as outages or demand fluctuations. Robust optimization is a
common technique for optimizing system performance under
the worst possible scenario; unfortunately, it has been criti-
cized to be too conservative, resulting in significant resource
cost and wastage [15]. This paper employs CVaR, a risk man-
agement tool that is naturally defined upon the trade-off be-
tween solution conservativeness and overhead [19]. The same
concept has been predominantly used in risk analysis in eco-
nomics and finance [19], but has additionally found application
in power grid optimization [20] and security management [21],
and most recently, in network traffic engineering [22], traffic
offloading [23] and edge resource management [15].

III. SYSTEM MODEL AND PROBLEM STATEMENT

A. Network and Application Model
The edge network is modeled as a directed graph G = (N,L),
where N is the set of nodes including access points (APs)
A ⊆ N and edge computing nodes (hosts) H ⊆ N , and L is
the set of inter-connecting links. Each edge node h ∈ H has
computing capacity ch > 0, and each link l ∈ L has bandwidth
capacity bl > 0. We use Lin(n), Lout(n) ⊆ L to denote the sets
of in-coming and out-going links of node n ∈ N respectively.

An MSA is also modeled as a directed graph Γ = (V,E),
where V is the set of microservices, and E denotes the process-
ing inter-dependencies (i.e., API calls) between microservices
— an edge (u, v) ∈ E means microservice u may issue API
calls to microservice v for processing user requests. The MSA
serves multiple types of requests from its users, which enter

the edge network through the APs in A. For instance, a ride
sharing application needs to process passenger ride requests,
driver updates, passenger updates, trip completion, etc. Each
type of request is processed by a different set of microservices
via different processing paths. Specifically, a request is first
processed at an entrance microservice (e.g., a load balancer or
NGINX web server), which then issues API calls to successor
microservices for processing; each successor may further issue
calls to its own successors. Formally, assume the application
has K types of requests, and let [K] = {1, 2, . . . ,K}. For a
request type k ∈ [K], the processing inter-dependencies be-
tween microservices (API calls) are represented by a directed
acyclic graph (DAG) Γk = (Vk, Ek) — a subgraph of Γ.

Microservices are deployed as distributed instances in the
edge network. Hence an API call involves 1) forward transmis-
sion of call parameters (e.g., request data and meta-data) from
predecessor to successor, 2) processing at successor including
further API calls, and 3) backward transmission of results
to predecessor. Let Hv ⊆ H be the set of nodes deploying
microservice v, and Vh ⊆ V be the set of microservices
with instances on h. To characterize the communication and
computing loads incurred by processing a request, we define
ρke,1, ρ

k
e,2≥0 as the forward and backward communication load

ratios respectively on inter-dependency edge e=(u, v) ∈ Ek,
and ρkv≥0 as the computation load ratio incurred on microser-
vice v, for request type k. In practice, both the subgraphs {Γk}
and the load ratios can be obtained by profiling the application
with sample workloads in a controlled environment [24], [25].

B. Resource Provisioning Problem Statement
For load balancing, an MSA utilizes distributed microservice
instances deployed across the edge network. A basic provision-
ing problem in this scenario is to provision sufficient comput-
ing resources on edge hosts and bandwidth in the network,
and properly assign computation and communication loads
to microservice instances and network routes respectively, to
ensure that data requests from all APs are served with sufficient
end-to-end throughput [2]. We next formalize this process.

1) Decision variables: To characterize the load on nodes
and links, we define two sets of decision variables: {fka (v, h)}
and {fka (e, l)}. For a request type k ∈ [K] from AP a ∈ A,
fka (v, h) ≥ 0 defines the allocated demand to microservice
v ∈ Vk on edge node h ∈ Hv for processing, and fka (e, l) ≥ 0
defines the allocated demand for inter-dependency e ∈ Ek
on communication link l ∈ L; both variables are defined in
terms of source demand, i.e., the volume of type-k requests
in-coming from a that are assigned to a node/link. These
variables are later translated into actual computation (e.g., GHz
for CPU frequency) and communication load (e.g., bps for
bandwidth) via the load ratios. Additionally, a single variable
ψ ≥ 0 represents the maximum incurred load on any node/link,
defined as the total load divided by the capacity of a node/link.

2) Capacities: The following constraints couple demand
allocations with the maximum load factor ψ, using microser-
vice load ratios and node/link capacities.∑
k∈[K]

∑
a∈A

∑
e∈Ek

(
ρke,1 ·fka (e, l)+ρke,2 ·fka (e, l′l)

)
≤bl ·ψ, ∀l∈L;

(1)∑
k∈[K]

∑
a∈A

∑
v∈Vk∩Vh

ρkv · fka (v, h) ≤ ch · ψ, ∀h ∈ H. (2)



Note that in Eq. (1), both the forward and backward communi-
cations are accounted for for each edge and link, where l′l is
the opposite-direction link of l ∈ L.

3) Processing and flow conservation: The computation
demand of a microservice comes from either external users,
or a predecessor microservice in the processing DAG. At a
microservice, each received user request (unit demand) must be
processed and then forwarded to every successor microservice
via some API call(s). This motivates us to define the following
constraint for the processing and forwarding process:∑

l∈Lout(n)
fka (e, l)−

∑
l∈Lin(n)

fka (e, l) =

1{n∈Hu} ·f
k
a (u, n)− 1{n∈Hv} ·f

k
a (v, n),

∀k∈ [K], a∈A,n∈N, e=(u, v)∈Ek,
(3)

where 1{X} is the indicator function of some condition X.
The left-hand-side of Eq. (3) defines the excessive (out-going)
flow incurred by inter-dependency e on node n. If both u and
v do not have any instance on node n, then the excessive
flow should be exactly 0, as n only forwards traffic for inter-
dependency e. If u is on n but v is not, then the excessive flow
should be equal to the amount of demand that u processes on
n; in other words, u has to forward all its processed demand
to any instance(s) of successor v located on some other nodes.
Similarly, if v is on n but u is not, then v should receive the
same amount of demand that it is assigned to process from
any instance(s) of u somewhere else, i.e., its negative excess
flow should equal fka (v, n). Finally, when both u, v are on n,
then the excessive out-going flow simply equals the demand
that u processes minus the demand that v processes. If the
excessive flow is positive, then u processes more than v on n
and hence must send some of its processed demand to some
other instance(s) of v; if the excessive flow is negative, then
v is processing more than u on n, and some of v’s demand
must come from some other instance(s) of u. In summary,
Eq. (3) defines 1) a multi-source multi-destination network
flow for data transmission for each inter-dependency e, and
2) correlation between each microservice instance’s processing
demand allocation and its input/output demand flow.

4) Demand: Assume the demand for each request type k
at each AP a is known, denoted as δka . The demand allocation
should cover all external demands to avoid exceeding the
provisioned resources. For simplicity, we assume that each
request’s Gk has a single entrance microservice vk, and that
vk is deployed at every AP instead of on edge nodes; this
assumption is for mathematical convenience only, and does
not affect generality of our model. The demand constraint is:

fka (vk, n) ≥ δka , ∀k ∈ [K], n = a ∈ A. (4)
5) Objective: With the above, the edge provider’s goal is

to minimize the maximum load incurred on any node/link. The
microservice load balancing (MLB) problem is defined as:

minf,ψ ψ s.t. (1)–(4). (5)
Remark: We note that although Program (5) is similar to

the microservice load balancing problem studied in existing
work [2], they differ in at least three aspects. First, the formu-
lation in [2] assumes existence of dedicated communication
channels between microservice instances, while Program (5)
more practically models a shared edge network between com-
putation nodes. Second, our model balances load across both
nodes and links, while [2] only considers computation load
balancing but neglects the network load. Third, both forward

and backward communications are considered in our model,
while [2] only considers forward communications. These fac-
tors make our model a non-trivial generalization of [2]. Further,
we will extend our model to address the dynamic demands of
microservice-based applications, as we show next.

IV. ROBUST PROVISIONING WITH DYNAMIC LOADS

A. Load Dynamics in Microservice Load Balancing
If demands {δka} are known and fixed, Program (5) is an
LP with a polynomial size, and can be solved optimally in
polynomial time [26]. However, real-world user demands are
heterogeneous and dynamic across geographical areas. For
instance, for a taxi service, demand distribution in different city
areas can be drastically different in workdays versus weekends,
or during busy hours versus off hours, as have been verified
in large-scale datasets [15]. This requires constantly adjusting
load balancing in the network, or otherwise congestion will
happen and will lead to degraded application performance.

At application level, it is easy to employ adaptive load
balancing across microservice instances, through orchestrators
such as Kubernetes [27]. However, load balancing is limited by
the provisioned resources on edge nodes and in the network,
which are much more difficult to adjust in the real time.
For instance, Kubernetes does not generally allow adding or
removing resources such as CPU cores or memory to microser-
vice instances during run-time, and only allows adding more
instances on a limited number of platforms. Meanwhile, real-
time network reconfiguration is also prohibitively expensive
even with software-defined networking (SDN). The difficulty
in real-time resource adjustment thus requires edge provider
to specifically tackle the potential load dynamics proactively.

B. Stochastic Modeling of Load Dynamics
We tackle dynamics via stochastic modeling. To start with,
we use random variables to model demand dynamics, where
δka ∈ R∗ now denotes the random demand of type k at AP a
here and hereafter; the minimum maximum load ψ Program (5)
then also becomes a random variable that depends on {δka}.
Replacing δka with the expectation E[δka ] yields a stochastic
version of MLB. Nevertheless, while this stochastic version
considers load dynamics, optimizing for the expected case
does not provide robustness: it is likely that δka will frequently
exceed E[δka ], in which case the provisioned resources cannot
serve all demands and congestion would rise.

This motivates us to explicitly model worst-case scenarios
in provisioning, utilizing tools in risk modeling and manage-
ment that were originally developed for finance. Formally,
given a random variable R denoting the potential investment
loss due to market variation, and given a target confidence
level α ∈ [0, 1], we can define two risk measures [19]:

VaRα(R) , min{r | Pr[R ≤ r] ≥ α}; (6)

CVaRα(R) , E[R |R ≥ VaRα(R)]. (7)
In the above, VaRα(R) denotes the minimum threshold value
r of investment loss, such that the actual loss will not exceed
r with at least α probability. CVaRα(R) then further defines
the expected loss when the loss actually exceeds the threshold
VaRα(R), i.e., the expected loss in the worst (1−α) scenarios.

CVaR gives us an excellent tool for integrating robustness
into Program (5) with controlled robustness. Unlike robust
optimization which solely optimizes for the absolute worst



case, CVaR allows tuning the level of robustness via the α
parameter, which should match with the level of confidence
that edge provider wants to provide to the MSA regarding
its throughput guarantee. Integrating CVaR into Program (5)
yields the following robust MLB (RMLB) problem:

minf,ψ ψ

s.t. (1)–(3);
fka (vk, n) ≥ CVaRα(δka), ∀k∈ [K], n=a∈A.

(8)

C. Sample Average Approximation of CVaR
Solving the stochastic constrained formulation in (8) has at
least two challenges. First, one has to derive a closed-form
formulation of the CVaR to be integrated into Program (8), as
the computation of CVaR crucially depends on the computa-
tion of VaR as in Eq. (7). Second, optimization with CVaR
commonly requires knowing the exact distributions of random
variables {δka}. In reality, the exact probabilistic distributions
of demands are unknown, and statistical estimation with known
distributions can be both costly and inaccurate.

In this subsection, we address the above challenges with
an approximation approach. First, to integrate CVaR into Pro-
gram (8), we apply the following equivalent CVaR formulation:

CVaRα(R) = min
r

{
r +

1

1− α
E[(R− r)+]

}
, (9)

where (·)+ = max{0, ·}. The equivalence between Eqs. (7)
and (9) is proved in Theorem 1 in [19]. To further tackle
the unknown load distributions, we apply the idea of sample
average approximation (SAA) in stochastic optimization. In
plain words, SAA approximates each expectation term in a
stochastic program with the average value of a set of ran-
dom samples that are drawn from the underlying distribution.
Specifically, assume for each δka we obtain a set of samples
denoted by {δ̃k,1a , δ̃k,1a , · · · , δ̃k,Na } where N is the sample size.
Then Eq. (9) can be approximated with

CVaRα(δka) ≈ min
r

{
r +

1

1− α
1

N

∑N

i=1
(δ̃k,ia −r)+

}
. (10)

Eq. (10) is a convex program involving a single variable r.
Based on standard i.i.d. assumptions, it can be shown that
Eq. (10) converges to the true CVaR value with probability 1
when the sample size N →∞; see [28, Chapter 9] for details.

D. A Data-Driven Approach for RMLB
We wrap up description of our approach with a discussion
on sampling and management. Traditionally, SAA is comple-
mented by Monte Carlo experiments to obtain i.i.d. samples
for approximation, which could be expensive in reality. Fortu-
nately, modern MSAs are commonly equipped with measure-
ment and monitoring modules, which can automatically collect
observed demand data in the network. Since the external
demands are generated by users, they are generally not affected
by the measurement and resource management decisions, and
hence can be empirically regarded as i.i.d. samples. With
sufficient data on observed demand, the edge provider can first
apply Eq. (9) to derive the CVaR value of each δka , and then
solve Program (8) to derive a resource provisioning plan.

One important choice that the edge provider needs to
make is on the trade-off between SAA accuracy and resource
management overhead. The underlying demand distribution
across geographical locations can be regarded as a mixture of
demand distributions over the temporal domain. For instance,

the demand distribution at 8am on Monday is generally quite
different from the demand distribution at 8pm on the same
day, or at 8am on a weekend day. Given a limited amount
of data samples, it is generally beneficial to approximate
the underlying distributions than directly approximating the
mixture distribution, as the former would have lower variance
than the latter due to the time-varying and repeating demand
patterns validated in real-world datasets [15].

Getting back to RMLB, the edge provider can choose to
approximate the demand distribution across all times using the
entire dataset, and derive a static resource provisioning plan
that stays the same for most of the time. It can also choose to
divide the dataset into different time slots (e.g., per hour on
weekdays and weekends), and derive resource provisioning for
each time slot. The latter is expected to improve provisioning
performance (e.g., reducing the per-time slot maximum load
in RMLB), though with increased overhead for switching
between provisioning plans across time slots. Our evaluations
show that the benefit of employing time-varying provisioning
is appreciable, and could likely outweigh the overhead.

V. PERFORMANCE EVALUATION

A. Simulation Dataset and Setting
Due to lack of an overall dataset containing both application
and network data, our evaluation dataset was synthesized from
real-world and randomly generated data. For application data,
we profiled a real-world MSA: the social network from Death-
StarBench [3]. The application contained 23 inter-dependent
microservices. To profile the application, we generated three
types of workloads: compose-post, read-home-timeline, and
read-user-timeline, and then used Wireshark to obtain the full
packet traces between microservices for each type of request.
We then derived the communication load ratios by summing up
the number of bytes transmitted from/to each microservice and
between each pair of inter-dependent microservices respec-
tively; for computation load ratios, we empirically summed
communication load ratios of all in-coming edges, and as-
signed computation capacities correspondingly in the same
unit. Some statistics of the profiled MSA are shown in Table I.

TABLE I: Workload Types, Statistics and Demand Data
Workload Type # MSs # Edges Data Source
compose-post 21 25 pick-up drivers
read-home-timeline 4 3 pick-up passengers
read-user-timeline 5 4 drop-off passengers

For the edge network and the geo-distributed demands, we
obtained the NYC 2018 Yellow Taxi Trip Data from NYC
Open Data [29], including pick-up/drop-off times and taxi
zones for 112 million taxi trips. We picked 20 most popular
taxi zones in terms of total pick-up and drop-off traffic, which
accounted for more than 50% of the total traffic over all 265
zones. Each picked taxi zone was regarded as one AP asso-
ciated with one edge node. For each zone (AP), we extracted
three types of demands, corresponding to the 10-minute total
numbers of pick-up drivers, pick-up passengers, and drop-off
passengers averaged in each hour as a data point. We then
mapped the taxi demands to the application’s workload types
as in Table I, with each driver/passenger count simulating
6250 corresponding mapped requests per second, distributed
in the area of an AP. Finally, to build the edge network, we
assumed the APs/edge nodes were connected by a Watts–
Strogatz random graph with 4 neighbors and 0.3 rewiring
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Fig. 1: Results with varying confidence α (percentile). Total resource consumption in (b) includes both computing and network
resources. The (1− α) curve in (c)–(d) shows the expected fraction of violations guaranteed by VaR/CVaR.

probability for each node. We assumed each link had 1Gbps
capacity, and each edge node could process up to 2.5Gbps
of in-coming data. Each microservice was deployed on 20%
randomly selected edge nodes. To average out random noise,
we generated network topologies with 50 random seeds in each
simulation setting, and averaged each evaluation metric by
running the comparison algorithms on the generated networks.

The one-year demand data was divided into a training and
a test set. The training set included the first 20% (73 days)
of the entire dataset, while the test set included the rest 80%.
We used the training set as historical demand data to derive
the estimated CVaR demands, and solve the RMLB problem.
We then used the rest 80% to test the performance of the
RMLB resource provisioning solution. The default confidence
α was set as 95%. We compared our RMLB solution to two
of its variants: 1) a shortest path-based load balancing (SPLB)
solution which solves RMLB with fixed shortest path routing
between any pair of nodes, and 2) a blind load balancing
(BLND) solution in which each microservice evenly distributes
its load to all successor instances without considering inter-
dependencies and microservice locations, but bandwidth provi-
sioning is solved with the same multi-source multi-destination
flow as in our formulation. The two baseline variants were
picked to show the impact of network-(un)awareness and inter-
dependency-(un)awareness respectively. All solutions were im-
plemented in Python code with Gurobi [30] as the LP solver.

B. Evaluation Results
1) Impact of α on robustness: In Fig. 1, we evaluated

RMLB, SPLB and BLND with different α values in [0%, 99%]
for CVaR computation. Note that α = 0 means the CVaR is
equal to the expected demands. In Fig. 1(a), with higher α,
the training objective value λ increased, as more worst-case
demands were taken into account. Consequently in Fig. 1(b),
the total resource utilization (defined as the sum of provisioned
communication and computing resources over sum of all
capacities) increased to deal with the worst-case demands.
Among all algorithms, RMLB always achieved the best λ in
training. SPLB consumed slightly less resources than RMLB
at the cost of a higher λ, due to its less flexibility with route
selection; naive load balancing with BLND had significantly
worse λ and resource consumption. Meanwhile in Figs. 1(c)
and (d), the fraction of cases where real demands violated
provisioned resources drastically decreased with increased α
for both the training and testing datasets, showing the great
advantage of adding robustness. Note that for all algorithms,
the number of cases that violated the provisioned resources
are significantly less than the (1 − α) guarantee provided by
VaR/CVaR in both training and testing phases, demonstrating

that CVaR provides the desired level of robustness to resource
provisioning. Overall, by solving RMLB with different α
values, the edge provider can clearly see the trade-off between
resource consumption and robustness, and make the best
decision based on its optimization goal.
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Fig. 2: Results with varying node capacities.

2) Computing and communication bottlenecks: In Fig. 2,
we evaluated RMLB with different resource bottlenecks.
Specifically, we left link capacities unchanged, while multi-
plying node capacities by a scaling factor in [0.25, 4]. This
effectively changed the ratio of computing versus communi-
cation capacities in the network. In Fig. 2(a), the objective
value λ decreased with diminishing return when the node-link
capacity ratio increased, showing the transitioning of resource
provisioning from computing-bottlenecked to communication-
bottlenecked. Comparing RMLB to the two baselines, first,
RMLB outperformed both SPLB and BLND in almost all cases
in terms of λ, though this may be at the cost of more resource
consumption than the baselines sometimes. Second, the gap
between SPLB and RMLB was smaller when computing was
the bottleneck, and the gap between BLND and RMLB was
smaller when communication was the bottleneck. This is
intuitive, as SPLB is generally network-agnostic, while BLND
is to some extent computing-agnostic and does not consider the
inter-dependencies between microservices. RMLB’s superior
load balancing performance comes from its joint planning
of computation and communication resources, and explicit
consideration of microservice inter-dependencies.

3) Time-varying resource adjustment: In Fig. 3, we evalu-
ated the impact of time-varying resource provisioning. We first
divided all days into weekdays and weekends, and then further
divided each day into 24 hours. Then, we aggregated the hours
into different time slots, ranging from 1 hour to 24 hours per
slot. In total, this resulted in 48 to 2 time slots. We then divided
the demand dataset into the dataset for each time slot, and
solved the RMLB problem for each time slot independently.
This simulates the case when the edge provider can adjust
the resource provisioning across time slots, but cannot do it
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Fig. 3: Results with time-varying resource provisioning.

more frequently due to the involved cost and performance
overhead. In Fig. 3(a), we showed the average λ value across
all time slots by each algorithm. We can see that with finer-
grained time-varying resource provisioning (fewer hours per
slot), the resulted λ is smaller. In Fig. 3(b), a similar trend can
be observed for total resource consumption. Both results have
suggested that employing time-varying resource provisioning
can better adjust to the different demand distributions at differ-
ent time slots, resulting in better load balancing performance.

VI. CONCLUSIONS

In this paper, we studied robust resource provisioning for MSA
load balancing. To address microservice inter-dependencies
and accurately model the required resources for serving geo-
distributed application demands, we developed a network-
aware resource provisioning formulation called MLB. To ad-
dress dynamic geo-distributed demands, we then introduced
stochastic modeling into the formulation, and formulated a
robust version of the problem called RMLB, utilizing a risk
estimation and optimization tool from economics and finance
called CVaR. The robust formulation focuses on optimizing
resource provisioning with respect to worst-case demand fluc-
tuations up to a certain confidence level chosen by the edge
provider, and can flexibly trade-off between model conser-
vativeness (robustness) and resource consumption. Based on
the robust formulation, we further developed a data-driven
approach for approximating CVaR with data samples regarding
real-world demand distributions. We evaluated RMLB with
simulations based on real-world application and demand data,
and showed its flexibility in robustness-resource trade-off and
superior performance compared to baseline solutions.
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