
P4PCN: Privacy-Preserving Path Probing for
Payment Channel Networks

Ruozhou Yu, Yinxin Wan, Vishnu Teja Kilari, Guoliang Xue, Jian Tang, Dejun Yang

Abstract—Recent advances in security and cryptography have
enabled new paradigms for secure networking in various scenar-
ios. The payment channel network (PCN) is a notable example,
which has emerged from the combination of the traditional credit
network in economics and the latest blockchain technology. PCN
provides a secure and efficient way for conducting payments, by
addressing both the intrinsic financial risk of the credit network
and the scalability issue of the blockchain. A crucial challenge in
PCN is routing, i.e., to find a set of paths that fulfill a payment
request. Due to the fully distributed and dynamic nature of
PCN, existing routing algorithms utilize active probing to improve
routing success probability. However, while the payment itself is
privacy-preserving through existing protocols, the probing process
can leak sensitive information including the location of the sender
or the recipient. In this paper, we address the privacy of the users
in the path probing process, filling in the last piece of the privacy
puzzle in PCN. We propose P4PCN, a cryptographic protocol for
anonymous active probing without knowing the identities or public
keys of the intermediate nodes, while hiding the locations of sender
and recipient as well as any path-related information. Our protocol
is lightweight and scales with the number of hops a probe explores.
We confirm its performance via real-world implementation and
simulation experiments.

Keywords—Blockchain, privacy and anonymity, payment chan-
nel network, routing, universal re-encryption

I. INTRODUCTION

Blockchain is a cryptographic mechanism that achieves
security through decentralization. Designed to implement a
distributed ledger, blockchain ensures data security through the
consensus of distributed blockchain maintainers, so that no one
can manipulate the ledger data without breaking a significant
portion of the maintainers. Security of the blockchain largely
depends on the size of the maintainer set. For this reason,
cryptocurrency has been introduced both as a killer application
and as the incentive mechanism, driving the general crowd to
participate in maintaining the blockchain. Since the invention
of the blockchain, thousands of cryptocurrencies have been
developed, supporting numerous novel applications such as
smart contract, supply chain, etc. The total capitalization of
the cryptocurrency market tops at over $800B, with even far
more implicit economic impact in all business sectors.

As a basic functionality of cryptocurrency, however, digital
payments are encountering a seemingly conflicting situation.
On one hand, our conventional centralized financial infrastruc-
ture is efficient enough to handle billions of transactions every
day, but suffers from the intrinsic financial risks and the lack
of security and transparency. On the other hand, blockchain
enhances security and eliminates the financial risk, at the cost
of severely degraded efficiency and scalability due to the need
for global consensus. This issue has drawn significant interests
from both the academia and the industry.

The payment channel network (PCN) has emerged as a
very promising solution to this problem, which combines the
blockchain technology with the conventional credit network in
economics [6], [8]. Specifically, users establish peer-to-peer
channels with deposits, and transfer funds by adjusting the
deposit allocation on the channels. Honest transactions are
thus stacked in each channel, while only the final results are
published onto the blockchain when the channels are closed.
For security, each channel is protected by an on-chain smart
contract, such that a dishonest off-chain behavior will be
punished through on-chain arbitration. Therefore, expensive
blockchain operations are limited to the establishment, close-
out, and rare dispute arbitration for each off-chain channel.
A well-connected network of payment channels can enable
off-chain transactions for most payment scenarios, drastically
improving the efficiency and scalability of the blockchain itself.
Bitcoin and Ethereum, the two leading cryptocurrencies, are
both deploying PCNs to scale their main blockchains [1], [10].

At its core, a PCN relies on routing to find payment paths
with sufficient fund balances, and employs a multi-hop payment
contract to secure indirect payments through the network [10].
The biggest challenge for PCN routing is the distributed and
dynamic nature of the PCN, where channel balances are con-
stantly changing with each on-going transaction. To improve
routing success, many algorithms have employed probing-based
techniques, which actively gathers up-to-date information from
the network before making routing decisions [14]–[16]. It has
been shown that probing-based solutions lead to significantly
improved routing success rate compared to algorithms based on
static or periodically updated information [14], [15].

A practical concern of digital payment users is the privacy
of their transactions. Due to the transparency of the blockchain,
it is intrinsically difficult to ensure strong anonymity for on-
chain transactions. As a result, existing privacy-preserving
blockchains only ensure pseudonymity of the transactions but
not unlinkability [13]. PCN has a natural advantage over the
blockchain for privacy, as most transactions are stacked within
channels without being published. With the newly developed
privacy-preserving payment contracts, information such as the
identity and location of transacting users, as well as the transac-
tion value, can be hidden from external adversaries and curious
intermediate nodes [7], [9], [17]. Yet this does not solve the
whole problem, as such information may also be leaked in the
routing process. For example, many routing algorithms, such as
the Spider network [14], Flash [15] and CoinExpress [16], rely
on probing to improve routing performance over algorithms
based on static information [6], [12], but does not have the
anonymity properties of the latter ones.

In this paper, we aim to resolve this one last piece of
puzzle for privacy-preserving PCN. We propose P4PCN, an

1

anonymous path probing protocol for probing-based routing
algorithms, which can be combined with the privacy-preserving
payment contracts to construct a full protocol stack for privacy-
preserving payments through the PCN. Compared to existing
anonymous communication protocols such as onion routing [4],
the biggest challenge for anonymous path probing is that the
sender may not know the path(s) that the probe will traverse
in advance. This violates the conventional requirement of
knowing all the public keys of nodes on the path in anonymous
communications, rendering all such protocols inapplicable, in-
cluding but not limited to [2]–[4]. We address this by designing
a novel cryptographic protocol. The key idea is to allow each in-
termediate node to both derive a symmetric key with the sender,
and encrypt the queried data as well as necessary information
for later decryption at the recipient, at the same time. A core
technique in our construction is the Universal Re-encryption
protocol used to re-encrypt the probe at each hop [5], while
the symmetric key derivation is inspired by Sphinx [3] and
HORNET [2]. Our protocol is both lightweight and scalable.
We validated its efficiency and scalability via implementations
and contrast experiments against a naive construction based on
the hybrid universal mixing (HUM) protocol in [5].

Our main contributions are summarized as follows:

• To our best knowledge, no existing work has studied or
addressed the anonymous probing problem in networking.
We are the first to study and address this problem.

• We design a cryptographic protocol for anonymous prob-
ing that preserves sender and recipient anonymity, and
ensures the integrity and confidentiality of queried data.

• We thoroughly analyze the security of our protocol, and
validate its efficiency and scalability through implementa-
tion and contrast experiments.

The rest of this paper is organized as follows. Sec. II
presents our system model and security goals. Sec. III presents
the detailed design of our protocol. Sec. IV presents the security
analysis of our protocol. Sec. V presents our performance eval-
uation results. Sec. VI discusses how this protocol affects the
routing algorithm design, as well as other potential applications
of this protocol. Sec. VII concludes this paper.

II. SYSTEM MODEL AND SECURITY GOALS

A. System Model

We consider a fully distributed PCN denoted by G =
(V,E), where V is the set of user accounts that consti-
tute the network, and E denotes the set of directional pay-
ment channels between nodes. Each channel e 2 E is
associated with a set of channel status attributes, attre =
{balancee, delaye, expiratione, feee, . . . }. Due to the dynamic
nature of the network, some of the attributes, notably the
balance of each channel, are constantly changing with on-going
payment requests and transactions. As a result, each node only
has up-to-date information regarding all the channels adjacent
to it, while it has no knowledge of the instantaneous channel
status of any remote channel.

A payment request is comprised as (src, dst, val), where src

and dst are the sender and recipient respectively, and val is the
amount to be transferred. Some requests may have additional
constraints, for example, a deadline dl, a fee budget cost, etc.

Due to the primary constraint on val as well as these secondary
constraints, the sender commonly needs to gather instantaneous
information from the network to decide on its actual payment
paths. Both information gathering and path selection are part of
the payment routing process. If a guaranteed payment success is
preferred, the sender can also reserve the balances on the path(s)
until the payment is done, to avoid concurrency issues [16].

In this paper, we primarily focus on the information gath-
ering process, which we call path probing. In path probing, the
sender sends out probing messages to gather information from
network nodes. Each node attaches the queried information onto
the probe, and then forwards the probe to one or multiple next
hops, until each probe reaches the intended recipient. Note that
since the sender has no knowledge of the remote channels, we
assume that the actual choice of next hops is at the discretion of
each forwarding node. For example, a node may either choose
a simple broadcast-based method [16], or guide the selection
of forwarding nodes with its local information, such as in
imbalance-aware routing [14] or coordinate-based routing [12].
For generality, we do not rely on a specific probing algorithm,
and assume that each node v independently decides the set
of neighbors Nv to forward a received probe. We use datav

to denote the data that node v attaches to an on-going probe.
Based on the request, datav may contain balance, congestion,
delay, fee, etc. Each node reports data of the same length ldata.

B. Threat Model

Existing probing-based routing algorithms do not consider
the privacy of the sender and/or the recipient. For example,
CoinExpress [16] explicitly involves the sender and recipient
nodes in its probes. In this paper, we focus on an adversary who
tries to infer the payment patterns of senders and/or recipients
in the network. For example, observing a sender sending
out a probe that passes through several (corrupted) nodes,
an adversary can link this action with a future anonymous
payment transaction that goes through the same set of nodes.
The popularity of a recipient may also be inferred by observing
how many probes are targeting a recipient during a period.

We consider a local adversary that controls a subset of nodes
by either inserting malicious nodes or compromising existing
nodes. We assume the non-existence of a global adversary
that can observe all network traffic, as all communications
between peers are conducted via secure and anonymous chan-
nels. The adversary can access all the stored secrets and past
communications on the compromised nodes, but cannot access
such information on non-compromised nodes. For any privacy-
concerning user, we assume that the adversary cannot compro-
mise (or does not know if it has compromised) all the adjacent
nodes of the user; otherwise, the sender/recipient’s privacy
can be trivially broken since the adversary can access all the
user’s in-coming/out-going channels. Note that this assumption
realistically holds in PCNs that support private channels [11].
The goal of the adversary is to undermine user privacy instead
of launching denial-of-service attacks. Defense against denial-
of-service attacks is mainly through detection and prevention,
which is out of the scope of this paper.

C. Security Goals

We expect our protocol (or any other anonymous probing
protocol) to fulfill the following security goals.

2

• Correctness: Correctness means that a cryptographic pro-
tocol correctly implements all the functions of a normal
non-cryptographic protocol. In our probing problem, this
means that 1) each node (both intermediate node and
recipient) can identify its role regarding a received probe,
2) each intermediate node is able to attach queried infor-
mation onto the probe, and 3) the recipient can obtain all
the attached information from the probe.

• Data Integrity: The adversary cannot break the integrity
of the queried data attached by a non-compromised node
without being detected by the sender/recipient.

• Data Confidentiality: The adversary cannot access the
information attached by a non-compromised node, except
for the knowledge that it already has access to, e.g.,
statuses of channels adjacent to a compromised node.

• Sender Privacy: For any payment request between non-
compromised users, the adversary cannot infer the identity
or location of the sender. It also cannot decide if a non-
compromised node is the sender of any request.

• Recipient Privacy: For any payment request between non-
compromised users, the adversary cannot infer the identity
or location of the recipient. It also cannot decide if a non-
compromised node is the recipient of any request.

• Sender-Recipient Privacy: The adversary cannot decide
whether there is any on-going request between any users.

III. PROTOCOL DESIGN

A. Preliminaries

Let G be a cyclic group of prime order q (with length lkey),
satisfying the Decisional Diffie-Hellman (DDH) assumption.
Let g be a published generator of G. We omit writing the
modulus operation for brevity. We use the symbol ? to denote
an empty string, group element or identifier of an arbitrary size.
The following cryptographic primitives are used in our protocol:

• E(pk,m): encryption of message m with public key pk.
• D(sk, ⇠): decryption of ciphertext ⇠ with private key sk.
• PRG(s): a secure pseudorandom generator with key s.
• MAC(k,m): the Message Authentication Code (MAC) of

message m under key k, with length lMAC.
• HM(·), HE(·): two cryptographic hash functions.

B. Universal Re-encryption (URE)

Universal Re-encryption (URE) is a cryptographic protocol
for mixnets proposed by Golle et al. [5]. In plain words, URE
enables mix nodes to re-encrypt an encrypted message without
knowing the public key used for encryption. The original
construction of URE was built upon the ElGamal cryptosystem,
utilizing the homomorphic property of ElGamal. Let (x, y =
gx) be a private-public key pair for ElGamal encryption where
x is the private key. The ciphertext of message m 2 [1 . . . q�1]
is ⇠ = E(y,m) = (m · yk, gk) where k 2 [1 . . . q � 1] is a
secret random number, and the decryption algorithm runs as
m = D(x, ⇠) = ⇠[0] · (⇠[1]x)�1. Given two ciphertexts E(pk, a)
and E(pk, b) encrypted under the same key pk, the ElGamal
cryptosystem satisfies that E(pk, a) ⇥ E(pk, b) = E(pk, a ⇥ b)
for a group operator ⇥. Based on this, a ciphertext in the URE
protocol has two components, E(pk,m) and E(pk, 1), where the
latter can be used to re-encrypt the former without knowing the
public key initially used to encrypt it.

Note that the task of the original URE protocol is the
opposite of ours. The original URE aims to anonymously
transmit a message from sender to receiver through a sequence
of known mix nodes, such that no mix node has the knowledge
of the sender, the receiver, or any node other than itself and
its neighbors on the route. The message itself stays fixed
and encrypted through the entire transmission. In our task,
not only the path that a probe will traverse is undetermined
before probing, but each intermediate node also needs to attach
data (local channel information) queried by the sender. Each
node’s data must be kept secret so that other nodes cannot infer
whether this node is on the probed path or not. On the other
hand, each node needs to provide enough information for the
sender/recipient to decrypt the attached data. To address these,
we must modify the original URE protocol to fit our needs.

C. Anonymous Probing with Unknown Paths

Our insight is that, besides using URE for re-anonymization
as in mixnets, we can also use part of the URE protocol to
carry out a Diffie-Hellman Key Exchange (DHKE) with each
node that the probe traverses. The derived key can then be used
to encrypt the attached data of the intermediate node, while
the node can provide necessary DH-value to help the recipient
decrypt the encrypted data. To ensure anonymity, decryption-
related information and the data are encrypted within a reversed
onion: each node wraps a layer of encryption over the received
payload plus the newly attached DH-value and data. The
recipient gradually derives all the symmetric keys, and uses the
corresponding key to “peel off” each encryption layer, revealing
all the attached data layer-by-layer.

1) Probing with a Single Path: For simplicity, let us first
consider the case where probing is done through just one
(unknown) path. Here, each node knows which exact neighbor
it will forward a given probe to as next hop. But the sender does
not know the public key of any node on this path. Assume this
path is represented by (src = v0, v1, v2, ..., vn�1, vn = dst). We
also assume that the sender and the recipient securely share any
information that either of them uses in the protocol. We thus
do not distinguish between the cryptographic operations by the
sender or the recipient. The probing protocol works as follows:

Algorithm 1: Create Probe (Sender)
Input: Probe ID I .
Output: Initial probe message ⇢0.

1 Generate random x,, k� , k� 2U Zq; let y gx;
2 s0 gk� ;
3 m (pk0,?,?);
4 pl0 (⇠0,MAC(HM(s0), ⇠0), ⇣0), where

⇠0 = m� PRG(HE(s0)), ⇣0 = ?� PRG(HE(s0));
5 Generate probe ⇢0 = (a0, b0, c0, d0, pl0), where

a0 = yk�k� , b0 = gk�k� , c0 = gk� , d0 = g;
return ⇢0.

Create Probe: The sender generates secrets (x,, k� , k�) that
are shared with the recipient via a secure channel. The probe
contains the ElGamal ciphertext (a0, b0) = E(y, 1), an element
c0 containing part of b0, a random element d0, and the payload
pl0. Besides being part of the ciphertext, b0 acts as the DH-
value of the sender, used to establish a DH symmetric key with
each hop. c0 and d0 are both used for per-hop DHKE, so that
the recipient can derive the symmetric keys. Specifically, c0 is

3

used to pass the common part of the per-hop DH-value to the
next hop for constructing the next hop’s own DH-value, while
d0 is used to pass the current node’s DH-value to the next hop
for encryption into the payload. The DHKE with vi is based
on secret keys k� and xi (and common randomizing terms),
and for sender, though purely for formality, x0 = . Both k�
and are to make the initial probe indistinguishable from the
ones that have already passed some hop(s). Note that both the
symmetric key encryption using PRG and the encrypted empty
string ⇣0 are to facilitate padding, discussed later on.

Algorithm 2: Process Probe (Intermediate Node)
Input: Node vi, probe (a, b, c, d, pl), data.
Output: Next probe message ⇢i.

1 Decrypt (a, b) using its own key pair to see if it is the
recipient, and jump to Algorithm 3 if so;

2 Generate random ki, xi 2U Zq;
3 si bxi ;
4 m (pki, d, data);
5 pli (⇠i,MAC(HM(si), ⇠i), ⇣i), where

⇠i = m� PRG(HE(si)), ⇣i = pl� PRG(HE(si));
6 Construct probe ⇢i = (ai, bi, ci, di, pli), where

ai = aki , bi = bki , ci = cki , di = cxi ;
return ⇢i.

Process Probe: Each intermediate node’s procedure starts from
checking if it is the recipient. This is done by trying to decrypt
the ciphertext (a, b) = E(y, 1) using its own set of private keys
whose corresponding requests are expecting in-coming probes.
If the node is not the recipient, it proceeds to generate the next
probe to be forwarded. The first step is to derive its shared DH
key si using b as the DH value of the sender. si is then used to
encrypt a new payload, which contains the previous payload,
the old element d as the DH-value of the previous hop (which
is essential for the recipient to decrypt the previous payload),
and the queried data to be attached. Next is to update all the
group elements. The ciphertext (a, b) is re-encrypted using new
key ki. The common part of the DH-value, c, is also updated
by key ki to reflect the update on b. di stores the DH-value
of the current node, which will be either wrapped within the
payload at the next hop if the next hop is still intermediate, or
used for decryption if the next hop is the recipient.

Algorithm 3: Decrypt Probe (Recipient)
Input: Probe (a, b, c, d, pl), shared keys x, k� .
Output: Path p, per-hop data data = {data}.

1 while sizeof(pl) � valid payload segment length do
2 s dk� ;
3 (⇠, ⌫, ⇣) pl;
4 Check if ⌫ is a valid MAC of ⇠ under s; abort if not;
5 (pk, d0, data, pl0) (⇠, ⇣)� PRG(HE(s));
6 Add pk to p, and add data to data;
7 d d0, pl pl

0;
8 end
9 return (p,data).

Decrypt Probe: Once a recipient receives a probe targeting
itself, it starts decrypting the onion-encrypted payload to obtain
all the data. For each layer, the secret key is derived by
combining the corresponding node’s DH-value, either directly
transmitted from the last hop or obtained from the last layer
(for previous hops), with the secret k� of the sender/recipient.

The secret key is then used to decrypt the payload, revealing
the next layer of payload and DH-value, and the attached data
of this layer. Eventually, the path is reconstructed from the
attached public keys, and all data are decrypted layer-by-layer.

2) Probing with Multiple Next Hops: Now, let us consider
the case where each node can forward a probe to multiple
neighbors to increase the probing success probability and path
diversity. Forwarding the same probe message to multiple
neighbors would enable linkable attacks, if two colluding nodes
both receive the same message. For this reason, a new pair of
(ki, xi) should be generated for every neighbor that the probe
is sent to. Due to the re-encryption and the onion encryption
at every hop, even if colluding nodes receive the probe sent by
the same sender, they cannot relate them or distinguish them
from any other probe in the network.

3) Length-based Inference Attacks and Padding: One issue
with the original onion routing protocol is that an intermediate
node can infer its relative location along the path by observing
the length of the encrypted message, if it knows or can estimate
the length of the original message and/or the size of each layer.
To prevent such an attack, padding is commonly used to keep
all encrypted messages of constant length. In our scenario,
padding can serve an additional purpose. In payment routing,
commonly the sender/recipient has a limit on the length of an
acceptable payment path. If a path is too long, both the risk of
a failed payment is high, and it may incur a high transaction
fee at the sender. For this reason, the sender can pad the onion-
encrypted payload up to a pre-defined limit. Each node attaches
information by dropping the last ⇡ bits of the previous onion,
where ⇡ is the size of a layer of the payload and is known based
on the message format. The recipient can then detect paths
exceeding the pre-defined length, if the last layer of encryption
does not contain the initial payload sent by the sender, and
discard such paths accordingly.

IV. SECURITY ANALYSIS

A. Correctness

First, each node vi can identify whether it is the recipient
of a given probe by trying to decrypt the URE ciphertext (a, b)
against its own set of key pairs that are awaiting probes. If
the decrypted value for any of the key pairs is 1, the probe
belongs to the corresponding probing request. During probing,
each node attaches its local data onto the probe by encrypting
it with the secret key si derived using DHKE with the sender’s
provided DH-value (element b in the URE ciphertext). Finally,
the recipient opens each layer of the onion by deriving si. Note
that for the i-th hop (i > 0), it satisfies that bi = c

k�

i as well as
di = cxi

i�1. Therefore, we have si = bxi
i�1 = c

k�xi

i�1 = d
k�

i . Since
di is always encrypted in the onion of the next hop (or directly
transmitted to recipient at last hop), the recipient (knowing the
shared secret k�) can gradually derive the secret keys to decrypt
all layers and obtain all the data. Note that the recipient does not
need to decrypt the innermost layer, as any information there
can be directly shared between the sender and the recipient,
and hence s0 is purely used to achieve indistinguishability.

B. Data Integrity and Confidentiality

Since each piece of data attached to the probe is MACed
and onion-encrypted, it suffices to show that the secret key si of

4

a non-compromised node cannot be obtained by an adversary
if both the sender and the recipient are non-compromised. Note
that the secret key si contains two secret components, the xi

held by the non-compromised node vi, and the k�k� initially
embedded by the sender. Without either of these two pieces or
the key itself (which is discarded after use), no adversary can
derive si based on the DDH assumption.

C. Sender, Recipient, and Sender-Recipient Privacy

Regarding sender and recipient privacy, we consider several
cases. First, a compromised node not adjacent to either the
sender or the recipient can only see some probe passing
through, but cannot link it to either the sender or the recipient
due to the encryption. A node adjacent to the sender may try
to infer if the previous hop is the sender, but cannot tell since
some other node that connects to the last hop directly or via a
path may have originated the probe. Similarly, a node adjacent
to the recipient cannot tell whether the probe is targeted to the
next hop or some other node afterwards. Furthermore, a node
cannot know its own location with regard to either the sender
or the recipient in the network, since all probes are of the same
length and are re-randomized at every hop. Finally, since the
adversary cannot tell whether any probe can be linked to any
sender or recipient, he also cannot tell whether a pair of sender
and recipient is communicating or not.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our protocol.
Since we are the first to propose a protocol for the anonymous
probing problem in networks, our only reference solution is
a modified version of the hybrid universal mixing (HUM)
protocol described in the original URE paper [5], which uses a
different way for establishing symmetric keys used for encryp-
tion. Below, we first describe the modified HUM protocol, and
then analyze the performance of these two protocols.

A. Modified Hybrid Universal Mixing [5]

In the HUM protocol, the authors proposed to use symmet-
ric key encryption to encrypt and re-encrypt the initial message,
while using the URE protocol to deliver the symmetric keys
used by each hop for final decryption. This protocol can be
modified to additionally use the symmetric keys to encrypt and
re-encrypt the data each node attaches to the probe. Assume
that the maximum path length is L. The sender sends out the
following message as the initial probe:

⇢0 = (pl,E(pk, 1), vec),

where pl = (⇠,MAC(HM(s0), ⇠),mrand), ⇠ = (pk0,?) �
PRG(HE(s0)), mrand is a random filler string of length (L �
1) · lseg with lseg = ldata + lkey + lMAC, and

vec = (E(pk, 1), . . . ,E(pk, 1),E(pk, s0))

contains (L � 1) copies of the encrypted value 1 plus an
encrypted copy of the initial secret key s0.

When a node vi receives a probe, it attaches its pki and data

to the head of the payload while dropping the last lseg bits, picks
a new key si, and then encrypts the new payload with si; the
MAC is also computed and attached. It then encrypts si with
the help of the value E(pk, 1) at the head of vec (if the path does
not exceed length L), and then left-rotates all the components

in vec. This can be done by multiplying the first element of
E(pk, 1) with si in ElGamal encryption. Finally, it re-encrypts
the middle component E(pk, 1) in the probe, as well as all the
other components in vec, using a new random key ki. If there
are more than one next hop, then as in our protocol, new keys
need to be generated, and the entire message re-randomized,
for each of the next hops of the current node.

Identification of the recipient is also done by decrypting the
middle component E(pk, 1). After that, the recipient decrypts
all the secret keys stored in vec from the back, and uses all the
keys to gradually decrypt the payload and obtain all the data.

B. Analytical Comparison

Here we analytically compare the overheads of our protocol
and the modified HUM protocol. We assume that the network
has a path length limit of L intermediate nodes, and each probe
has traversed a path of length P L on average. Size of a
group element including public/private keys is lkey = K bytes.
We focus on the overhead for processing 1 probe at each node,
as the number of probes a node receives/forwards is determined
by the actual probing algorithm employed, which is out of the
scope of this paper. We omit the generation of all public/private
key pairs. Table I shows an analytical comparison between the
two protocols.

Scheme Our Protocol Modified HUM

Comp.
Sender (5, 0) (2L+ 2, 0)
Interm. (6, 1) (2L+ 3, 1)
Recipient (P + 1, 1) (P + 1, P)

Communications (2L+ 4)K (3L+ 2)K

TABLE I: Overhead comparison for one probe. Computation
is displayed as (mod exp,mod inv), denoting the numbers
of modular exponentiation and modular inverse operations re-
spectively; communication overhead is measured by the length
of the probe header excluding data payloads and MACs but
including the path information (public keys of each hop).

C. Simulation Experiments

We implemented both protocols in Java. The ElGamal key
size was 1024 bits (128 bytes). A data segment contained 4
bytes of data and a 128-byte public key identifying this hop.
The MAC of a data query was 20 bytes using the HMAC-SHA-
1 implementation of Java. The SHA1PRNG implementation of
Java is used for the keyed PRG in order for reproducibility of
the experiments. Each probe traversed the maximum allowed
hops before reaching the recipient. We ran our experiments on a
Linux PC with Quad-Core 3.4GHz CPU and 16GB of memory,
and repeated each experiment for 10, 000 times.

Fig. 1 shows the average execution times for the creation,
processing and decryption of a probe, respectively. Clearly, the
creation and processing times of our protocol remain constant
with increasing number of hops the probe can explore, while
those of HUM increase linearly. For decryption, both protocols
have an increasing execution time, but ours is faster than HUM
due to less number of modular inverse operations.

Fig. 2 shows the probe size versus the number of hops.
HUM has a larger probe size over ours due to the more number
of ElGamal ciphertexts used to store all the encryption keys,
resulting in higher communication overhead in practice.

5

(a) Probe creation time vs. # hops. (b) Probe processing time vs. # hops. (c) Probe decryption time vs. # hops.

Fig. 1: Probe creation (sender), processing (intermediate node) and decryption (recipient) execution times per probe.

Fig. 2: Probe size vs. # hops.

VI. DISCUSSIONS

Probing with anonymity: With our protocol, now the inter-
mediate nodes will have no way of knowing the sender and/or
the recipient. Unfortunately, this complicates the probing algo-
rithm design, because each node now has limited information
in deciding where to forward a probe. For instance, simple
broadcasting can lead to the case where every copy of a probe
will wander in the network until reaching the recipient, and all
the probes generated by a request will most likely overwhelm
the entire network. Two promising solutions are probabilistic
forwarding and coordinate-based routing. The former naturally
preserves privacy, while the latter can be implemented using
a privacy-preserving coordinate system to avoid breaking user
anonymity [12]. We plan to investigate these in our future work.

Other applications: Beyond PCN, our protocol may also find
applications in a wide range of other scenarios. For example,
this protocol can be used to anonymously construct a com-
munication path towards a remote location through a dynamic
sensor network or a vehicular network, or to find a trust path
in a trust-based social network.

VII. CONCLUSIONS

In this paper, we studied the problem of anonymous
probing in PCN routing, the last piece in building a fully
privacy-preserving PCN payment protocol stack. We proposed
a cryptographic protocol to ensure both data security and
user privacy during probing-based network information gath-
ering. Combined with existing probing-based dynamic rout-
ing algorithms and privacy-preserving payment protocols, this
can achieve efficient payments with high success probability
and full privacy preservation for PCN. Our protocol is both
lightweight and scalable. Comparing our protocol with another
possible protocol derived from hybrid universal mixing, our
protocol has constant probe creation and processing overheads,

lower (although linear) probe decryption overhead, and smaller
communication overhead. Though we specifically targeted the
PCN, our protocol can be used in a broad range of other
domains, such as for anonymous data querying in vehicular
networks, sensor networks, social networks, and beyond.

REFERENCES

[1] “Raiden Network.” URL: https://raiden.network/
[2] C. Chen, D. E. Asoni, D. Barrera, G. Danezis, and A. Perrig, “HORNET:

High-speed Onion Routing at the Network Layer,” in Proc. ACM CCS,
2015, pp. 1441–1454.

[3] G. Danezis and I. Goldberg, “Sphinx: A Compact and Provably Secure
Mix Format,” in Proc. IEEE S&P, 2009, pp. 269–282.

[4] D. Goldschlag, M. Reed, and P. Syverson, “Onion Routing for Anony-
mous and Private Internet Connections,” Commun. ACM, vol. 42, no. 2,
pp. 39–41, 1999.

[5] P. Golle, M. Jakobsson, A. Juels, and P. Syverson, “Universal Re-
encryption for Mixnets,” in Proc. CT-RSA, 2004.

[6] G. Malavolta, P. Moreno-Sanchez, A. Kate, and M. Maffei, “SilentWhis-
pers: Enforcing Security and Privacy in Decentralized Credit Networks,”
in Proc. ISOC NDSS, 2017.

[7] G. Malavolta, P. Moreno-sanchez, C. Schneidewind, A. Kate, and
M. Maffei, “Anonymous Multi-Hop Locks for Blockchain Scalability
and Interoperability,” in Proc. ISOC NDSS, 2019.

[8] P. Moreno-Sanchez, A. Kate, M. Maffei, and K. Pecina, “Privacy
Preserving Payments in Credit Networks: Enabling Trust with Privacy
in Online Marketplaces,” in Proc. ISOC NDSS, 2015, pp. 8–11.

[9] O. Osuntokun, “AMP: Atomic Multi-Path Payments over Lightning,”
2018. URL: https://lists.linuxfoundation.org/pipermail/lightning-dev/
2018-February/000993.html

[10] J. Poon and T. Dryja, “The Bitcoin Lightning Network: Scalable Off-
Chain Instant Payments,” Tech. Rep., 2016.

[11] P. Rochard, “Lightning Routing Node Starter
Pack,” 2019. URL: https://medium.com/lightning-power-users/
lightning-routing-node-starter-pack-704c0e7d79cb

[12] S. Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg, “Settling Pay-
ments Fast and Private: Efficient Decentralized Routing for Path-Based
Transactions,” in Proc. ISOC NDSS, 2018.

[13] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized Anonymous Payments From
Bitcoin,” in Proc. IEEE S&P, 2014, pp. 459–474.

[14] V. Sivaraman, S. B. Venkatakrishnan, M. Alizadeh, G. Fanti, and
P. Viswanath, “Routing Cryptocurrency with the Spider Network,”
arXiv:1809.05088, 2018. URL: http://arxiv.org/abs/1809.05088

[15] P. Wang, H. Xu, X. Jin, and T. Wang, “Flash: Efficient Dynamic Routing
for Offchain Networks,” arXiv:1902.05260v1, 2019.

[16] R. Yu, G. Xue, V. T. Kilari, D. Yang, and J. Tang, “CoinExpress: A Fast
Payment Routing Mechanism in Blockchain-based Payment Channel
Networks,” in Proc. IEEE ICCCN, 2018.

[17] Y. Zhang, Y. Long, Z. Liu, Z. Liu, and D. Gu, “Z-Channel: Scalable and
Efficient Scheme in Zerocash,” in Proc. ACISP, 2018.

6

