
Non-preemptive Coflow Scheduling and Routing
Ruozhou Yu, Guoliang Xue, Xiang Zhang, Jian Tang

Abstract—As more and more data-intensive applications have
been moved to the cloud, the cloud network has become the
new performance bottleneck for cloud applications. To boost
application performance, the concept of coflow has been pro-
posed to bring application-awareness into the cloud network. A
coflow consists of many individual data flows, and a coflow is
completed only when all its component flows are transmitted.
The network performance of a cloud application is dependent
on the completion time of coflows, rather than the completion
time of each individual flow. Existing coflow-aware optimization
solutions employ flow preemption to reduce the completion time,
which brings difficulty in practical implementation and non-
negligible overhead. In this paper, we study the non-preemptive
coflow scheduling and routing problem in the cloud network. We
propose an offline optimization framework for coflow scheduling,
as well as two subroutines for coflow routing using single-
path routing and multi-path routing respectively. We also show
that our proposed framework is easily extensible to the online
scenario. Extensive evaluations show that the proposed solutions
can greatly reduce coflow completion time compared to coflow-
agnostic solutions, and are also computationally efficient.

Keywords—Coflow, scheduling and routing, flow completion
time

I. INTRODUCTION

The cloud networks have become the performance bot-
tleneck of many network-bound applications [1]. Most tra-
ditional network optimization solutions focus on optimizing
application-agnostic network goals, such as end-to-end la-
tency, flow completion time, or flow-level fairness. However,
in practice, optimized application-agnostic network goals do
not always translate into improved application performance.
Many cloud applications still suffer from poor application-level
communication performance [2].

Many data-intensive cloud applications typically have a
staged computing process. Each stage of the application con-
sists of multiple individual tasks. Stages are proceeded in
sequence. The application proceeds to the next stage only when
all tasks in the current stage are finished.

In each stage, a set of data flows may need to be transmitted
before the final result can be generated. The transmission of
those data flows can account for over 50% of the completion
time of the application [3]. This urges for network optimization
in terms of data flow groups rather than individual flows, for
which the concept of coflows have been brought about [2]. A
coflow defines a group of parallel individual flows. A coflow is
finished only when all its component flows finish transmission.
From the application’s perspective, only the completion time
of the entire coflow will affect the actual performance of the

Yu, Xue and Zhang ({ruozhouy, xue, xzhan229}@asu.edu) are all with
Arizona State University, Tempe, AZ 85287. Tang (jtang02@syr.edu) is with
Syracuse University, Syracuse, NY 13244. All correspondences should be
addressed to Guoliang Xue. This research was supported in part by NSF grants
1457262. The information reported here does not reflect the position or the
policy of the federal government.

application. This is because even when some individual flows
finish quickly, the application still needs to wait until the
remaining flows finish transmission before it can proceed to
the next stage.

To achieve coflow-level network optimization, two types
of approaches can be employed. First, the routing of each
component flow of a coflow needs to be determined in order
to minimize its completion time. Second, as the network is
commonly shared by a set of coflows, proper scheduling needs
to be planned between coflows, in order to minimize the
average completion time of all coflows.

In existing works [4]–[6], the scheduling of coflows is
assumed to be preemptive. In other words, each flow (coflow)
that is in transmission may be preempted by some other flow
(coflow), if such preemption can result in reduced coflow com-
pletion time. Although preemption leads to better performance
in theory, however, it is difficult to implement flow preemption
without introducing any performance loss in practice. Conse-
quences of flow preemption include non-negligible signaling
overhead, extra latency for flow switching, dropped packets
during flow preemption, etc.

Towards this end, in this paper we study the non-preemptive
coflow scheduling and routing problem in the cloud network.
We argue that, once a flow starts transmission, neither its
transmission path(s) nor its bandwidth allocation should be
changed. In this circumstance, we propose solutions for coflow
scheduling and routing, in order to minimize the average
coflow completion time in the network. Specifically, we first
propose an offline optimization framework for the coflow
scheduling and routing problem, which employs Shortest-
Coflow First (SCF) as its basic scheduler. Based on the
framework, we further propose two solutions for evaluating
the coflow completion time of each coflow in the network: one
using single-path routing, and one using multi-path routing. We
also show that the offline optimization framework can be easily
extended to an online scheduler, as shown in Section IV-D.

Our major contributions are summarized as follows:

• To the best of our knowledge, we are the first to study the
coflow scheduling and routing problem in non-preemptive
networks. The problem is formally defined.

• We propose an offline optimization framework for non-
preemptive coflow scheduling and routing. Two subrou-
tines are presented to find the minimum coflow comple-
tion time under single-path routing and multi-path routing
respectively. The offline framework is easily extensible to
the online scenario.

• We have conducted extensive simulations to evaluate the
performance of the proposed solutions.

The rest of this paper is organized as follows. Section II
introduces related work of coflow scheduling and routing in the
literature. Section III presents the network model, and a formal

description of the problem studied. Section IV presents the pro-
posed solutions, including the offline optimization framework,
the subroutines for computing minimum coflow completion
time using single-path and multi-path routing, and the online
algorithm extension. Section V shows the evaluation results.
Section VI concludes this paper.

II. RELATED WORK

Although the concept of coflow is new, there have been
many researches regarding both flow scheduling and routing
in cloud networks. In this section we introduce related work
in terms of coflow and traditional flow scheduling and routing.

A. Coflow

Coflow is a newly developed concept, which introduces
application-awareness in cloud network optimization. The
coflow concept is first proposed in [2], where the authors
analyzed the communication patterns of different cloud appli-
cations and argued to use grouped data flows as the network
model of data parallel jobs. After that, two solutions Varys [4]
and Aalo [6] both employ the coflow concept to develop
flow scheduling solutions to minimize coflow completion time.
Specifically, Varys [4] optimizes completion time given the
size of each coflow (flow), while Aalo [6] assumes that the
flow sizes are not known a priori. Rapier [5] follows the
above intuitive for scheduling, but combines scheduling and
coflow routing to further optimize coflow completion time.
All the three works above employ preemptive flow scheduling
to reduce coflow completion time. Barrat [7] also brings task-
awareness into network optimization. Unlike the above works
which are centralized, it proposes a distributed algorithm for
task-aware flow scheduling.

Our work is most similar to Rapier [5], but differs in that
we study the non-preemptive scheduling and routing problem.

B. Flow Scheduling

Flow and packet scheduling has been studied extensively in
the context of cloud and data center networks to minimize flow
completion time or meet flow deadlines [8]–[16]. DCTCP [8],
D2TCP [10] and L2DCT [15] focus on improving flow com-
pletion time by modifying the default behavior of TCP at end-
hosts, and thus do not require modification of the switch or
host hardware. They rely on Explicit Congestion Notification
(ECN) for congestion notification. On the other hand, D3 [9],
PDQ [11], DeTail [12], HULL [13], pFabric [14] are clean-
slate designs that require modification to switch hardware or
host NICs. They rely on different flow and packet scheduling
policies on the switch side to reduce congestion and improve
completion time. PIAS [16] also does not require switch modi-
fication, but needs switches that have multiple priority queues.
It employs end-host packet tagging for packet prioritization,
and also relies on ECN for congestion notification.

C. Flow Routing

Flow routing or traffic engineering in cloud networks
mainly focuses on load balancing, for example, [1], [17], [18].
Hedera [1] uses a centralized controller and several global

routing algorithms for flow traffic engineering. Duet [18]
further utilizes dedicated hardware to improve latency and
availability upon software load balancers. Compared to them,
the solutions proposed in this paper use explicit routing to
achieve reduced coflow completion time.

III. PROBLEM STATEMENT

A. Network Model

We consider the cloud network as a directed graph G =
(V,E). V denotes the set of nodes. E denotes the set of links in
the network, with ce denoting the capacity of any link e ∈ E.

The network is concurrently shared by a set of data parallel
jobs. Each job consists of multiple concurrent tasks, for which
communication between network nodes is needed. The com-
munication need of a job is modeled as a coflow request, which
consists of multiple individual flow requests between different
sources and destinations. The coflow request is completed only
when all of its flow requests finish transmission.

Formally, the set of concurrent coflow requests is defined as
S = {C1, C2, . . . , Cm}. Each coflow request is defined as a set
of flow requests, Ci = {Fi,1, Fi,2, . . . , Fi,ni}. Each individual
flow request is defined as a triple, Fi,j = (si,j , ti,j , di,j), where
si,j ∈ V is the source node, ti,j ∈ V is the destination node,
and di,j ∈ R+ is the flow size.

B. Problem Statement

We study the problem of scheduling and routing of coflow
requests. The primary objective is to minimize the average
coflow completion time (CCT). Denote Ti as the CCT of coflow
request Ci, and Ti,j as the completion time of each individual
flow request Fi,j . The CCT of coflow request Ci is defined as
the maximum completion time of any of its flow requests:

Ti = max
j
{Ti,j |Fi,j ∈ Ci} (1)

The completion time of each individual flow request has
two components: transmission time and end-to-end delay.
Since cloud networks commonly have ultra-low end-to-end
delay [8], we neglect the end-to-end delay in the computation
of flow completion time. The transmission time of a flow
request is determined by the aggregated bandwidth that it
receives over time. Formally, define Bi,j(t) : R∗ 7→ R∗ as
the instantaneous bandwidth received by Fi,j at time t, its
completion time is defined as

Ti,j = arg min
τ

{∫ τ

0

Bi,j(t) dt = di,j

}
(2)

We denote Bi,j(t) as the bandwidth function of flow Fi,j .

The bandwidth function of a flow implicitly defines the
scheduling of the flow. Two types of flow scheduling tech-
niques exist in the literature: preemptive scheduling and non-
preemptive scheduling. Compared to non-preemptive schedul-
ing, preemptive flow scheduling is a recently proposed tech-
nique that allows a newly arrived flow to preempt the trans-
mission of an already scheduled flow, thus to reduce flow
completion time by preferring shorter flows [11]. However,
while preemptive scheduling can result in shorter flow com-
pletion time in theory, it encounters many challenges in

implementation, including extra signaling overhead for flow
preemption, introduced flow switching latency, packet drops
during the preemption process, requirement for designated
switch hardware, etc. As a result, flow preemption is far from
being practically applied to production cloud networks. Hence
in this paper, we assume that the scheduling of flows is non-
preemptive, meaning that the data path and bandwidth share
of a flow will remain unchanged once it starts transmission.

Definition 3.1: A bandwidth function Bi,j(t) is said to be
non-preemptive if it is in the following form:

Bi,j(t) =

{
bi,j , t ∈ [ts, te)

0 , t < ts or t ≥ te
(3)

where ts and te are the start and end time of Fi,j respectively,
and bi,j is the constant bandwidth received by Fi,j . 2

In other words, the transmission of Fi,j will receive constant
bandwidth bi,j from start time ts, until its completion at te.

In the network, each flow request is realized by actual
network paths. We consider both single-path routing and multi-
path routing for flow requests. The set of network paths used
by flow request Fi,j is denoted by Pi,j . Since the network is
assumed to be non-preemptive, the path(s) of each flow request
cannot be changed once it starts transmission.

The bandwidth of Fi,j is defined as the sum of bandwidth
from all paths in Pi,j . Formally, for each path p ∈ Pi,j , we
use Bpi,j(t) to denote the bandwidth function of flow Fi,j on
path p, and we have

Bi,j(t) =
∑
p∈Pi,j

Bpi,j(t) (4)

We use Bi,j(t) to denote the set of bandwidth functions on
all paths for Fi,j , given Pi,j .

Similar to Eq. (3), we say that bandwidth function Bpi,j(t)
is non-preemptive iff flow Fi,j receives constant bandwidth bpi,j
on path p from ts to te, and 0 bandwidth at all other times.

Given above, the Non-preemptive Coflow Scheduling and
Routing (NCSR) problem is defined as follows:

Definition 3.2 (NCSR): Given network G = (V,E) and
coflow requests S, find a path set Pi,j and non-preemptive
bandwidth functions Bi,j(t) for each flow Fi,j , such that 1) at
any time t, the total bandwidth allocated on any link e does not
exceed its capacity ce, and 2) the average CCT of all coflow
requests is minimized. 2

Note that since the number of CCTs is fixed, minimizing the
average CCT is equivalent to minimizing the sum of CCT of
all coflows, i.e.,

min
∑
Ci∈S

Ti . (5)

IV. NON-PREEMPTIVE SCHEDULING AND ROUTING

A. Offline Optimization Framework

We first state our offline optimization framework for non-
preemptive coflow scheduling and routing. The essence of our
framework is a Shortest-Coflow First (SCF) scheduler, which
schedules coflow requests according to their minimum CCT.
The framework is shown in Algorithm 1.

Algorithm 1: Coflow optimization framework
Input: topology G and coflow requests S
Output: per-flow paths Pi,j and bandwidth functions

Bi,j(t) for ∀Fi,j ∈ Ci
1 for each coflow request Ci ∈ S do
2 if network supports multi-path routing then
3 [Ti, Pi,j , bi,j]← multiCCT (G,Ci);
4 else
5 [Ti, Pi,j , bi,j]← singleCCT (G,Ci);
6 end
7 end
8 Schedule all coflows in ascending order of Ti;
9 return Pi,j and Bi,j(t) based on bi,j and scheduling.

To compute the minimum CCT for each coflow request, the
algorithm relies on two subroutines: singleCCT when only
single-path routing is enabled, and multiCCT when multi-
pathing is allowed. As the network is non-preemptive, no two
coflow requests will share the network at the same time, in
order to avoid bandwidth competition among coflow requests,
which may result in prolonged coflow completion time for
each coflow. After computing the minimum CCT, all coflow
requests are scheduled using Shortest-Coflow First.

B. Multi-path Routing

In modern cloud networks, multi-pathing is a common
practice to reduce congestion and increase bandwidth utiliza-
tion [19]. In this subsection, we present multiCCT , which
finds the minimum CCT for each coflow request using multi-
path routing. The input of the subroutine is the network
topology G, and a coflow request Ci. This is because during
the transmission of Ci, it exclusively uses all the bandwidth
in the network.

A network flow-based formulation of the problem is for-
mulated as follows. Define the following variables:

1) fei,j ∈ R+: the flow value of Fi,j on edge e.
2) bi,j ∈ R+: the constant bandwidth value of Fi,j .
3) Ti ∈ R+: the (tentative) CCT of coflow request Ci.

The problem of finding the minimum CCT of coflow request
Ci can be formulated as follows:

min Ti (6a)
s.t. Ti = max

j
{di,j/bi,j} (6b)

ni∑
j=1

fei,j ≤ ce ∀e ∈ E (6c)

∑
(u,v)∈E

f
(u,v)
i,j −

∑
(v,w)∈E

f
(v,w)
i,j =

0 , v /∈ {si,j , ti,j}
−bi,j , v = si,j
bi,j , v = ti,j
∀Fi,j ∈ Ci, v ∈ V (6d)

Objective (6a) minimizes the tentative CCT Ti of coflow
request Ci. Note that Ti 6= Ti, as the final completion time
of Ci is also determined by the scheduling among coflow
requests. Constraint (6b) defines the CCT of the coflow re-
quest, as the maximum ratio of di,j/bi,j among all component
flows, where bi,j is the aggregated constant bandwidth of Fi,j .

Constraint (6c) specifies the capacity constraint of each edge.
Constraint (6d) specifies flow conservation constraints at each
node, in which the aggregated bandwidth of each component
flow is defined.

This formulation is non-linear due to the existence of Con-
straint (6b). However, it can be transformed into an equivalent
linear program as follows:

max fi (7a)
s.t. fi ≤ bi,j/di,j ∀Fi,j ∈ Ci (7b)

(6c) and (6d)
where fi = 1/Ti.

Since (7) is a linear program, it can be solved in polynomial
time. After that, the resulting flows can be easily decomposed
into sets of network paths, with proper bandwidth allocations.

C. Single-path Routing

Multi-path routing can increase the available bisectional
bandwidth of each flow, and thus potentially reduce the coflow
completion time. However, not all network environments
support multi-path routing by default. In many cases, each
flow request can only be realized by one network path. In
this subsection, we introduce subroutine singleCCT , which
computes the minimum CCT using single-path routing.

Formally, define the following variables:

1) xei,j ∈ {0, 1}: the indicator of whether edge e is included
in the path of Fi,j (xei,j = 1) or not (xei,j = 0).

2) bi,j ∈ R+: the constant bandwidth value of Fi,j .
3) Ti ∈ R+: the (tentative) CCT of coflow Ci.

The problem of coflow scheduling and single-path routing can
be formulated as the following mixed integer program:

min Ti (8a)
s.t. Ti = max

j
{di,j/bi,j} (8b)

ni∑
j=1

xei,j · bi,j ≤ ce ∀e ∈ E (8c)

∑
(u,v)∈E

x
(u,v)
i,j −

∑
(v,w)∈E

x
(v,w)
i,j =

0 , v /∈ {si,j , ti,j}
−1 , v = si,j
1 , v = ti,j
∀Fi,j ∈ Ci, v ∈ V (8d)

Objective (8a) is to minimize the tentative coflow completion
time Ti. Constraint (8b) defines the completion time Ti as
the flow size di,j divided by bandwidth bi,j . Constraint (8c)
specifies the capacity constraints on each edge. Constraint (8d)
is the single-path conservation constraint.

The above formulation is a non-linear mixed integer pro-
gram, due to the non-linearity of Constraints (8b) and (8c), and
the integral constraints on variables xei,j . Hence it is intractable
to directly solve the program. To reduce the complexity for
solving the program, we apply the following transformations.

First, we eliminate the non-linearity of Constraint (8b)
using a similar method as in the previous subsection. The

resulting program is as follows:
max fi (9a)

s.t. fi ≤ bi,j/di,j ∀Fi,j ∈ Ci (9b)
(8c) and (8d)

Next, we linearize program (9) by introducing a new flow
variable fei,j = xei,j ·bi,j . Unlike xei,j , variable fei,j can take any
value in R+. By replacing all occurrences of xei,j with fei,j/bi,j ,
and multiplying Constraint (8d) by bi,j on both sides, we
obtain a linear program. Since we relax the integral constraints
on variables, the resulting program is a linear relaxation of
the original program (9a). One may observe that the resulting
program is actually identical to the program in (6). Exploiting
the linear relaxation, the singleCCT subroutine is shown in
Algorithm 2.

Algorithm 2: singleCCT (G,Ci)

Input: topology G and coflow request Ci
Output: minimum CCT Ti, per-flow paths Pi,j and

bandwidth allocation bi,j for ∀Fi,j ∈ Ci
1 Solve the linear relaxation of program (9);
2 for each flow request Fi,j ∈ Ci do
3 Find path pi,j ← arg maxp{ξpi,j} where

ξpi,j = min{xei,j | e ∈ p}, from si,j to ti,j ;
4 Pi,j ← {pi,j};
5 Set xei,j to 1 for ∀e ∈ pi,j , and 0 for ∀e /∈ pi,j ;
6 end
7 Given fixed values of xei,j , solve (9) to obtain bi,j for

each Fi,j , and fi;
8 return Ti = 1/fi, Pi,j and bi,j .

The algorithm first solves the linear relaxation to obtain
a fractional solution. After that, it employs deterministic
rounding to find an integral solution to per-flow path selec-
tion. Specifically, for each flow request, it finds the widest
(si,j , ti,j)-path pi,j with regard to weights denoted by xei,j .
This path is then assigned to the flow request. After all flow
requests are routed, the bandwidth allocation is then computed
by solving (9) again, using the fixed path assignments. Note
that with fixed variables xei,j , program (9a) now becomes a
linear program, and thus can be solved in polynomial time.

D. Online Scheduling and Routing

The framework proposed in Section IV-A is an offline
optimization framework. In this subsection, we modify the
framework to enable online coflow optimization.

At any time, the network scheduler maintains a list of
coflow requests that have yet been scheduled, along with the
minimum CCT of each coflow request. Upon the completion
of the current coflow request, the next coflow request with
the minimum CCT will be scheduled. When a new coflow
request arrives, the scheduler will first compute its minimum
CCT using either singleCCT or multiCCT . It then inserts
the new coflow request into the list of non-scheduled coflows.

To avoid starvation of large-size coflow requests, a waiting
threshold Γ can be defined. Any coflow request that has waited
for more than Γ time will be scheduled immediately in the next
slot, after the completion of the current request.

V. PERFORMANCE EVALUATION

A. Experiment Methods

We use randomly generated topologies and coflow requests
to evaluate the performance of the proposed solutions. The ran-
dom topologies are generated according to a modified Waxman
model, with connectivity guarantee. The default parameters
used in the Waxman model are α = 0.15 and β = 0.2.
Each topology by default contains 50 network nodes. Link
capacities are uniformly generated from [10, 100] Mbps. For
each experiment, we randomly generate 25 coflow requests.
Each coflow randomly has 1 to 10 component flows by default.
Flow sizes are uniformly generated from [10, 100] Mb.

In this paper, we have proposed solutions for non-
preemptive coflow scheduling and routing, which we name
as SCF (sSCF for single-path version and mSCF for multi-
path version). We compare our algorithms to a routing-only
algorithm, as well as a non-preemptive baseline solution for
coflow-agnostic flow scheduling and routing, listed as follows:

• Routing-only (RT): all flows are routed concurrently,
with the objective of minimizing maximum CCT.

• Shortest-Flow First (SFF): each flow is routed ex-
clusively in the network, and flows are scheduled with
Shortest-Flow First.

Both algorithms have two versions: for single-path routing
(sRT and sSFF) and for multi-path routing (mRT and mSFF)
respectively. mRT, sRT and mSFF use similar linear programs
for multi-path routing, and sRT uses deterministic rounding for
single-path routing. sSFF uses modified Dijkstra’s algorithm
to compute the widest path for each flow, and uses Shortest-
Flow First for scheduling. Detailed descriptions are omitted in
this paper due to the page limit.

All experiments are conducted on a Macbook Air, with
Intel Core i7 CPU (1.7GHz) and 8GB main memory. The
Gurobi [20] solver is used to solve linear programs in the
algorithms. Each experiment is run for 50 times under the same
experiment setting, and the following results are the average
of all the runs under the same settings.

B. Evaluation Results

20 25 30 35 40
coflow requests

0

100

200

300

400

500

600

A
v
e
r
a
g
e

c
o
f
l
o
w

c
o
m
p
l
e
t
i
o
n

t
i
m
e

mSCF

sSCF

mRT

sRT

mSFF

sSFF

(a) Average CCT vs. # coflow requests

20 25 30 35 40
coflow requests

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
u
n
n
i
n
g

t
i
m
e

(
s
)

mSCF

sSCF

mRT

sRT

mSFF

sSFF

(b) Running time vs. # coflow requests

Fig. 1: Average coflow completion time and running time
versus number of coflow requests.

We have conducted experiments with various settings to
evaluate the performance of our proposed algorithms. In Fig. 1,
we show the results under various number of coflow requests
in the network. Fig. 1(a) shows the average CCT versus the

number of coflow requests. Both mSCF and sSCF outper-
form the other algorithms. The SFF algorithms have very
high average CCT due to their coflow-unawareness. The RT
algorithms have higher average CCT than SCF algorithms
because they do not schedule between short and long coflows.
All algorithms have average CCT increasing with the number
of coflow requests, i.e., as the network becoming more and
more congested. Fig. 1(b) shows the running time of the
algorithms. SCF algorithms have lower running time than RT
in that they solve many smaller linear programs each time,
while RT algorithms solve an aggregated linear program with
more variables and constraints. sSFF has the lowest running
time as it does not involve solving linear programs but rather
uses the Dijkstra’s algorithm to compute widest paths.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Connectivity (alpha/beta) in Waxman model

0

50

100

150

200

250

300

350

400

A
v
e
r
a
g
e

c
o
f
l
o
w

c
o
m
p
l
e
t
i
o
n

t
i
m
e

mSCF

sSCF

mRT

sRT

mSFF

sSFF

(a) Average CCT vs. network connec-
tivity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Connectivity (alpha/beta) in Waxman model

0

20

40

60

80

100

120

140

160

R
u
n
n
i
n
g

t
i
m
e

(
s
)

mSCF

sSCF

mRT

sRT

mSFF

sSFF

(b) Running time vs. network connec-
tivity

Fig. 2: Average coflow completion time and running time
versus network connectivity.

Fig. 2 shows the results against various levels of connectiv-
ity of the network topology, determined by the two arguments
α and β used in the Waxman model for topology generation.
Higher values of both α and β means higher connectivity in
the network. Fig. 2(a) shows the average CCT against network
connectivity. Average CCT decreases with increased network
connectivity, due to the increase in bisectional bandwidth
between any pair. With higher connectivity, multi-path routing
performs better than single-path routing, as it can utilize more
bandwidth in the network. Also, as the network becomes more
and more spare, RT algorithms can utilize more bandwidth
by bandwidth sharing among coflows, and thus outperform
SCF algorithms. However, as bandwidth is a scarce resource in
cloud networks, such scenario is not common. SFF algorithms
perform the worst due to their coflow-unawareness. As for the
running time shown in Fig. 2(b), all algorithms have increasing
running time with increasing connectivity. The running time of
RT algorithms dominates the others as they solve an aggregated
linear program, which is time consuming.

Fig. 3 shows the results against various average link capac-
ities. Fig. 3(a) shows the average CCT against link capacities.
Average CCT decreases with increased link capacities. SCF
algorithms still outperform RT and SFF algorithms. SFF
algorithms perform the worst due to their coflow-unawareness.
In Fig. 3(b), since both the network size and the number of
coflows remain unchanged, the running time remains at the
same level with increasing link capacities.

Fig. 4 shows the results against the number of nodes in
the network. Fig. 4(a) shows the average CCT against the
number of nodes. As shown, the average CCT first remains
steady, but then decreases with increasing number of nodes.

100 200 300 400 500
Average link capacity

0

50

100

150

200

250

300

350

400

A
v
e
r
a
g
e

c
o
f
l
o
w

c
o
m
p
l
e
t
i
o
n

t
i
m
e

mSCF

sSCF

mRT

sRT

mSFF

sSFF

(a) Average CCT vs. average link cap.

100 200 300 400 500
Average link capacity

0.00

0.05

0.10

0.15

0.20

0.25

R
u
n
n
i
n
g

t
i
m
e

(
s
)

mSCF

sSCF

mRT

sRT

mSFF

sSFF

(b) Running time vs. average link cap.

Fig. 3: Average coflow completion time and running time
versus average link capacity.

30 40 50 60 70
nodes

0

50

100

150

200

250

300

350

400

A
v
e
r
a
g
e

c
o
f
l
o
w

c
o
m
p
l
e
t
i
o
n

t
i
m
e

mSCF

sSCF

mRT

sRT

mSFF

sSFF

(a) Average CCT vs. # nodes

30 40 50 60 70
nodes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
u
n
n
i
n
g

t
i
m
e

(
s
)

mSCF

sSCF

mRT

sRT

mSFF

sSFF

(b) Running time vs. # nodes

Fig. 4: Average coflow completion time and running time
versus # nodes in the network.

The steady phase is due to that the network is fully congested
by the coflows. With further increased network size, the
network becomes less congested in the second phase, and
thus the average CCT reduces. One can observe that when
the network is congested, SCF outperforms RT by scheduling
shorter coflows first. Such advantage does not hold when the
network is spare, as in this case RT can utilize more bandwidth
through bandwidth sharing among coflows. As bandwidth is
commonly a scarce resource in the network, SCF algorithms
are expected to outperform RT algorithms in most cases. As
baseline, SFF algorithms still perform the worst due to their
coflow-unawareness. In Fig. 4(b), the running time of all
algorithms increases with the size of the network.

In summary, we make the following conclusions.

1) SCF algorithms outperform RT algorithms when the net-
work is congested, while the contrary happens when the
network is spare. As the cloud networks are commonly
congested, we anticipate that SCF algorithms will out-
perform RT algorithms in practical environments. On the
other hand, the RT algorithms can serve as a backup plan
for SCF when the network is not congested.

2) SCF has lower time complexity than RT due to the
smaller-sized linear programs that it solves. This makes
SCF more suitable as an online algorithm compared to
RT.

3) With coflow-awareness, both SCF and RT greatly outper-
form SFF regarding the average coflow completion time.

VI. CONCLUSIONS

In this paper, we studied the non-preemptive coflow
scheduling and routing problem in the cloud network. We pro-
posed an offline optimization framework for non-preemptive

coflow scheduling and routing, which is based on a Shortest-
Coflow First scheduler. To implement the framework, we pro-
posed two subroutines, singleCCT and multiCCT , to com-
pute the minimum coflow completion times of each coflow, us-
ing single-path routing and multi-path routing respectively. Our
simulation results show that the proposed algorithms greatly
improve the average coflow completion time over routing-
only solutions or coflow-agnostic non-preemptive scheduling
solutions, and also have higher time efficiency.

REFERENCES

[1] M. Al-fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera : Dynamic Flow Scheduling for Data Center Networks,” in
USENIX NSDI, 2010.

[2] M. Chowdhury and I. Stoica, “Coflow: a networking abstraction for
cluster applications,” in ACM HotNets, 2012.

[3] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica,
“Managing data transfers in computer clusters with orchestra,” in ACM
SIGCOMM, 2011.

[4] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling
with Varys,” in ACM SIGCOMM, 2014.

[5] Y. Zhao, K. Chen, W. Bai, M. Yu, C. Tian, Y. Geng, Y. Zhang,
D. Li, and S. Wang, “Rapier: Integrating routing and scheduling for
coflow-aware data center networks,” in IEEE INFOCOM, 2015.

[6] M. Chowdhury and I. Stoica, “Efficient Coflow Scheduling Without
Prior Knowledge,” in ACM SIGCOMM, 2015.

[7] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decen-
tralized Task-Aware Scheduling for Data Center Networks,” in ACM
SIGCOMM, 2014.

[8] M. Alizadeh, A. Greenberg, D. a. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center TCP
(DCTCP),” in ACM SIGCOMM, 2010.

[9] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better Never
than Late : Meeting Deadlines in Datacenter Networks,” in ACM
SIGCOMM, 2011.

[10] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacenter
tcp (D2TCP),” in ACM SIGCOMM, 2012.

[11] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly
with preemptive scheduling,” in ACM SIGCOMM, 2012.

[12] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail:
reducing the flow completion time tail in datacenter networks,” in
ACM SIGCOMM, 2012.

[13] M. Alizadeh, A. Kabbani, T. Edsall, and B. Prabhakar, “Less is More :
Trading a little Bandwidth for Ultra-Low Latency in the Data Center,”
in USENIX NSDI, 2012.

[14] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pFabric: minimal near-optimal datacenter transport,”
in ACM SIGCOMM, 2013.

[15] A. Munir, I. a. Qazi, Z. a. Uzmi, A. Mushtaq, S. N. Ismail, M. S.
Iqbal, and B. Khan, “Minimizing flow completion times in data
centers,” in IEEE INFOCOM, 2013.

[16] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “Information-
Agnostic Flow Scheduling for Commodity Data Centers,” in USENIX
NSDI, 2015.

[17] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine
Grained Traffic Engineering for Data Centers,” in ACM CoNEXT,
2011.

[18] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan, and
M. Zhang, “Duet: Cloud Scale Load Balancing with Hardware and
Software,” in ACM SIGCOMM, 2014.

[19] C. Raiciu, C. Pluntke, S. Barre, A. Greenhalgh, D. Wischik, and
M. Handley, “Data center networking with multipath TCP,” in ACM
HotNets, 2010.

[20] G. Optimization, “Gurobi Optimizer.” [Online]. Available: http:
//www.gurobi.com/products/gurobi-optimizer

http://www.gurobi.com/products/gurobi-optimizer
http://www.gurobi.com/products/gurobi-optimizer

