
The Fog-of-Things Paradigm: Road towards
On-demand Internet-of-Things

Ruozhou Yu, Guoliang Xue, Vishnu Teja Kilari, Xiang Zhang

Abstract—In this article, we introduce the concept of Fog-
of-Things (FoT), a paradigm for on-demand Internet-of-Things
(IoT). On-demand IoT is an IoT platform where heterogeneous
connected things can be accessed and managed via a uniform plat-
form based on real-time demands. Realizing such a platform faces
challenges including heterogeneity, scalability, responsiveness and
robustness, due to the large-scale and complex nature of an IoT
environment. The FoT paradigm features the incorporation of fog
computing power, which empowers not only the IoT applications,
but more importantly the scalable and efficient management of
the system itself. FoT utilizes a flat-structured virtualization plane
and a hierarchical control plane, both of which extend to the
network edge and can be reconfigured in real-time, to achieve
various design goals. In addition to describing detailed design of
the FoT paradigm, we also highlight challenges and opportunities
involved in the deployment, management and operation of such
an on-demand IoT platform. We hope this article can shed some
light on how to build and maintain a practical and extensible
control backend to enable large-scale IoTs that empower our
connected world.

Keywords—Internet-of-Things, fog computing, Fog-of-Things,
on-demand IoT, control plane

I. INTRODUCTION

The Internet-of-Things (IoT) has been recognized as one
of the next mega-trends in the technology world. With its
ability to interconnect billions of smart things in global scale,
IoT is expected to empower innumerable new services and
applications that could improve human lives, including smart
cities, smart health, smart homes, Industry 4.0, etc. IoT has a
huge economic impact: the global IoT market is projected to
over 1 trillion dollars in the early 2020s [1].

The vision of IoT is powered by the billions of connected
smart things, which virtualize the real-world into digital data
that can be transmitted, analyzed, and further utilized. Yet, the
massive amount of things has lead to challenges for IoT. On
one hand, the current IoT, built upon existing infrastructures
such as cellular networks, can hardly accept and process the
tremendous amount of data generated by connected things.
On the other hand, IoT manageability is also challenged by
the huge number of heterogeneous things and the dynamic
nature of IoT where things are plugged, unplugged, moving
or under failure frequently. It is hard to manage billions of
connected things with fine-grained control in real-time. This
situation is exacerbated by the stringent requirements of many
IoT applications. A majority of IoT applications are real-time
in nature, meaning that they are designed to analyze continuous

Yu, Xue, Kilari and Zhang ({ruozhouy, xue, vkilari, xzhan229}@asu.edu)
are all with Arizona State University, Tempe, AZ 85287. This research
was supported in part by NSF grants 1421685, 1461886 and 1704092. The
information reported here does not reflect the position or the policy of the
funding agency.

data streams from different locations. These applications have
stringent quality-of-service (QoS) requirements, including but
not limited to computing power, latency, throughput, loss,
robustness, etc.

IoT devices are currently accessed and managed in an
ad hoc manner: most deployed things are only visible and
accessible to the deployer or owner itself, and have no public
access in general. The cause of this is the lack of an on-demand
architecture that provides scalable and flexible management
as well as uniform and universal access to IoT services. The
recently proposed Cloud of Things (CoT) paradigm aims to
address this issue [2]. CoT provides centralized access and
management for smart things in the cloud, therefore achieving
a number of benefits including on-demand service, resource
pooling, virtualization, etc. However, a cloud-based solution
has its limitations. First, it does not resolve the capacity
challenge: massive data still needs to be transmitted to the
cloud for analysis. Second, due to its long end-to-end latency,
the cloud is hard to respond in real-time to frequent network
dynamics and failures within vast geographical areas. Cloud-
hosted applications also receive unguaranteed QoS in terms of
latency, bandwidth and security.

Fog computing is an emerging computing paradigm aiming
to address these issues [4], [9]. Different from cloud computing
where all computing power is aggregated at a few globally
selected locations, fog computing features the deployment
of geo-distributed fog nodes across all network hierarchies,
and especially in the edge network. These fog nodes pro-
vide different levels of capacity and responsiveness to meet
various application needs. Fog computing inherits benefits of
cloud computing including elasticity and virtualization, while
bringing new benefits such as early data resolution, responsive
management on the edge, improved latency, robustness and
security, etc. However, due to cost and energy consumption is-
sues, fog nodes only have limited capacities, and can only serve
things and applications in nearby areas. Collaboration among
fog nodes enhances capacity but also complicates system
management. Fortunately, cloud computing and fog computing
are not incompatible in nature; in fact, they compensate each
other’s limitations. This has inspired us to seek a unified
approach to jointly leverage both cloud and fog computing
in IoT.

In this article, we present our understandings on the
direction to which the IoT shall evolve. We start from our
vision on the emergence of on-demand IoT, describing its
necessity and design goals. We then present an on-demand
IoT paradigm that jointly utilizes fog and cloud computing,
which we call the Fog-of-Things (FoT). FoT leverages the
distributed and location-aware nature of IoT services, and
features a hierarchical and reconfigurable control plane that

1



Broadband Providers

 

Cellular Providers

Backbone Providers Cloud Providers

Fog Providers

Infrastructure Providers

Things Owners Network Providers Computing Providers

IoT Provider Publish/Subscribe Platform QoS Management Access Control Resource Optimization

User Applications

Smart Industry
Smart City

Virtual Reality

Connected Cars

Smart Health

Smart Grid

Smart Traffic

Smart Home

Access Requests

Commands & Management Raw Data & Status

Data

Fig. 1: Three major parties in on-demand IoT: infrastructure providers, IoT provider, and users.

achieves responsiveness, scalability and other design goals.
We further describe crucial challenges and opportunities in the
deployment, management and operation of FoT. We envision
FoT, instead of its ad hoc or cloud-based counterparts, to be
one of the pillar stones of our future smart and connected
world.

II. ENVISIONING ON-DEMAND IOT

Currently, the IoT infrastructure is mostly deployed and
utilized in an ad hoc manner. Various things are produced
by different vendors to fulfill similar functions. They are
commonly deployed only to power a few applications that
belong to the deployer/owner itself, due to lack of proper
visibility and accessibility to the public. This has largely buried
the true potential of IoT where myriads of distributed things
generate massive high-dimensional data that could be used for
big data analytics and decision making.

These issues have urged efforts into on-demand IoT (also
called service-oriented IoT [10]), an IoT environment where
functionalities (sensing, actuation, data delivery, data analytics,
and application hosting) can be provisioned in runtime and
remotely accessed by authorized users. It is based on a similar
concept as cloud computing, where computing resources are
dynamically provisioned and accessed by tenants in an on-
demand manner.

Three parties are involved, as shown in Fig. 1. IoT provider
is who builds and manages the IoT platform, providing vari-
ous functionalities including virtualization, QoS management,

resource optimization, security, etc. Infrastructure providers,
such as cloud providers, network providers or things owners,
are who participate in the business and provide infrastructure
support. Finally, users, or tenants, are who access and utilize
the provided IoT services to develop IoT applications. In
general, an on-demand IoT can be built as an overlay upon
existing computing and network infrastructures, but can also
be built or incremented with self-owned equipment of the
providers.

On-demand IoT provides benefits similar to those of cloud
computing. From the business perspective, on-demand services
could largely reduce capital expenditures (CAPEX) of users by
reusing existing infrastructure. A well managed on-demand
IoT can reduce operational expenditures (OPEX) as well.
For things owners, allowing public access can boost resource
utilization, thus increasing their utilities or revenues. For
computing or network providers, on-demand IoT enables more
flexible pricing options such as pay-as-you-go, which also
help increase revenue. From the technical perspective, cen-
tralized management helps both infrastructure providers and
users. Infrastructure providers can alleviate their overloaded
components (network, computing on the edge) by employing
smart resource allocation. Users receive guaranteed services
via established service-level agreements (SLAs). Finally, a
widely accessible IoT platform is also important in inspiring
technological innovations, which is beneficial to the entire IoT
community.

On-demand IoT is a diverse, large-scale, complex and
dynamic environment to build, operate and maintain. IoT is

2



naturally distributed, and mainly offers location-based services.
Hence the same centralized control as in cloud computing
is basically not practical. Handling device heterogeneity and
dynamicity requires both responsiveness and scalability. In
general, system management and optimization is a great chal-
lenge both on the infrastructure and on the architectural design.
Below, we highlight some design goals of on-demand IoT.

• Scalability is probably the most important property of
any IoT system. Even a mid-scale IoT needs the ability
to manage millions to billions of heterogeneous devices.

• Virtualization is crucial in realizing dynamic and elastic
services. In general, devices should be exposed only to the
minimum extent that their functions can be utilized. De-
vices with similar functions should be further abstracted
using a uniform interface for simple and efficient access.

• Reponsiveness is more important in IoT environment
than in other environments, since a significant portion
of IoT applications are time critical. Responsiveness is
also crucial in handling system dynamics such as device
joining or removal, failure, mobility, etc.

• Location-awareness is in the nature of most IoT services.
A well-designed IoT system should both provide location-
awareness support to applications, and in return utilize it
to improve system performance and management.

• Robustness is to ensure system functionality during sys-
tem disturbances such as failures or maintenance. Realiz-
ing robustness is specifically crucial in versatile environ-
ments like IoT, where disturbances happen frequently.

• Elasticity means providing proper scaling and reconfigu-
ration when demands from users change over time. It also
means the system can sustain short-term load variations
without severe congestion.

• Security in IoT is different from it in other environments,
mainly because of the constrained nature of IoT devices.
Providing native security support to resource-constrained
devices is thus an important factor in architectural design.
IoT security is vital, since a security breach in IoT can
be much more devastating and life-threatening given IoT’s
ability to monitor and manipulate physical objects.

In the following, we present the design of FoT, an on-
demand IoT paradigm. FoT is able to natively achieve several
design goals, and also supports realizing the other goals with
orthogonal technologies.

III. THE FOT PARADIGM

A. Architecture Overview

Our FoT architecture has four planes, as shown in Fig. 2.

The data plane consists of the physical components, in-
cluding connected things, network switches and routers, and
computing nodes. These components perform their function-
alities based on upper-plane commands. Due to heterogeneity
and dynamicity, the data plane commonly requires frequent
reconfiguration and optimization from upper planes.

The virtualization plane stands as an intermediary between
physical components and decision units in the upper planes.
It abstracts heterogeneous physical components into uniform
and manageable virtual components.

 Control Plane
System Monitoring Resource Optimization

Service Provisioning

Energy Management

Dynamics Handling

Data Plane Connected 
Things

Network 
Devices

Computing 
Power

Virtualization Plane Things, Network and Computing 
Virtualization

Application/Management Plane
Application Service Interface

Management 
Interface

Fig. 2: Four basic planes of FoT.

The control plane is the decision core of the architecture.
It performs all decision-making tasks in FoT, including com-
ponent registration, service provisioning, status monitoring
and reporting, failure handling, and many more. Our FoT
control plane specifically features a recursively built hierarchy
of controllers to achieve several design goals of FoT; see
Sec. III-D.

The application/management plane provides external inter-
faces of the entire FoT system, and consists of the service in-
terface and the management interface. This plane discloses sys-
tem services and parameters to authorized users/management
teams, and receives application requests and system objectives
to be realized by the underlying planes.

B. Data Plane Operation

The data plane consists of the physical components. FoT
specifically features the integration of geo-distributed fog
nodes, which, in addition to enhancing application perfor-
mance, also enables local management of other components,
as will be detailed in Sec. III-D.

Two key characteristics of the data plane are heterogeneity
and dynamicity. Heterogeneity causes difficulty in automatic
management, and can lead to expensive manpower for manual
reconfiguration. To address heterogeneity, we add the virtual-
ization plane between the conventional control plane and data
plane; see Sec. III-C. Dynamicity causes scalability issue and
performance fluctuation. We delegate the handling of these
dynamics to the control plane to achieve fast and optimized
responses; see Sec. III-D.

C. Virtualization Plane Operation

The virtualization plane’s goal is to hide the heterogeneity
of thedata plane. Specifically, for components with similar
functions, the system maintains a general functional template,
which defines the minimum necessary information needed
to access and utilize the components. Using the functional
template, the system will generate a functional profile for
each component to describe its function, location, capacity,
and other information. E.g., the functional template of a
surveillance camera should include its resolution, color profile,
location, direction, output format, status messages, command
set, etc. These attributes are shared by all surveillance cameras,

3



Text

Driver Store

Virtualization Agent

Virtualization Drivers

Fig. 3: Virtualization plane design with three main elements:
the driver store, virtualization agents, and virtualization drivers.

and hence can be abstracted. Network is commonly abstracted
using software-defined networking (SDN). Computing power
is commonly abstracted in terms of virtual machines (VM).

Connected things are harder to virtualize than network
and computing, as they can be very diverse in functions and
specifications. We design the virtualization plane shown in
Fig. 3, which consists of three basic elements: the virtual-
ization drivers, the driver store, and the virtualization agents.
For all similar components (e.g., the same series of sensors
of a vendor), the system maintains a virtualization driver,
i.e., a module that translates component-specific profile into
functional profile of the component. All virtualization drivers
are stored in the driver store, a centralized database. When
the platform introduces a new type of components, e.g., a new
sensor model, the corresponding driver is added to the store
by the IoT provider. Component virtualization is automatically
performed by virtualization agents. Each agent keeps a list of
locally stored drivers. When a new component is connected,
its information is sent to the nearest agent, who will search
its local list for the corresponding driver. If the driver is not
available, the agent will download it from the central driver
store. The agent then performs virtualization for the component
as well as subsequent same-type components. These agents
are distributed in the network, such as alongside controllers
or at the access points. They act as local bridges between the
heterogeneous data plane and the uniform control plane.

D. Control Plane Operation

The control plane implements all the management and
optimization functionalities. We propose a novel hierarchical
control plane, which utilizes the in-network computing power
provided by fog computing to resolve the control plane scala-
bility problem.

Hierarchical structure. Our FoT control plane features a
hierarchy of controllers that apply control over data plane
components in a large geographical area, as shown in Fig. 4.
The controllers are organized into a tree structure. At the
bottom are leaf controllers, each covering a certain area of
connected things and other components (routers, fog nodes,
etc.). E.g., a leaf controller can control all components in
a smart building or a smart home. On top of that, several
adjacent low-level controllers are aggregated and controlled by
a parent controller. The parent controller also controls left-over
areas between its children’s controlled areas. Each controller

Controller

Computing Device

Network Devices

Connected Things

Projected Ctrl Area

Actual Ctrl Area

Ancestor Ctrl Area

Control Channels

Fig. 4: Our control plane design with hierarchical and recursive
controllers. Dashed circles show the projected control area
of a child controller of the current level, while dotted circles
show the control area of ancestor controllers of current-level
controllers. Child controllers are deployed in dense area to
alleviate parent load and/or provide better responsiveness.

is located at a computing node within or near the area it
controls, which has sufficient computing power to support the
controller’s operation. The root controller aggregates global
information and is commonly located in the cloud.

Recursive operation. Controllers operate in a recursive man-
ner. Each controller (except the leaf controllers) applies both
direct and indirect control to its control domain. Specifically,
for components within its child controller’s area, the parent
controller indirectly issues queries and commands via the
child. E.g., if a new device access request is received at the
parent controller, the request will be passed to the corre-
sponding child controller, who will process the request and
provide the corresponding access to the device if the request
is authorized. For components not covered by any child, the
controller directly queries and commands the components.
The internal logic of our design is to ensure that control
tasks are handled by the lowest-possible level of control. E.g.,
routing between devices within a smart building can be directly
handled by the leaf controller of the building, without referring
to higher-level controllers.

Self-contained reconfiguration. Similar to the recursive archi-
tecture for cellular networks [13], the FoT control plane is
reconfigurable. Controller assignment is based on the density
of components within an area, and can be reconfigured by
the parent controller on-the-fly. Furthermore, we argue that
controllers should be designed to be self-contained. This means
that a parent controller can automatically deploy and configure
new child controllers at emerging dense areas in its control
domain, using its controlled fog computing power, without hu-
man intervention. This enables a self-organizing control plane

4



that can automatically adjust to system load, which is very
important in achieving scalability, responsiveness, robustness
and elasticity.

Benefits. The benefits of our design is several-fold. First, it
achieves scalability by utilizing the location-awareness of IoT
services, reducing the states stored at higher-level controllers.
E.g., the root controller does not need to store the statuses
of most individual devices. Each controller now works on
a limited local view of the whole network, which greatly
increases the overall scalability of the system. Second, our
design improves responsiveness and robustness when facing
network dynamics. When a component moves or fails, this
event is immediately handled by the direct controller. In case
of system-wide optimization, the controller hierarchy can be
configured to participate in distributed optimization, which
amortizes the control overhead of using a single controller.

E. Application/Management Plane Operation

The application/management plane has two parts: the ser-
vice interface and the management interface. The service
interface exposes IoT services to tenants, including sensing
and actuation by connected things, connectivity, and fog and
cloud computing. It accepts application requests from tenants,
and translates them into services that will be accommodated by
the control plane. Similarly, the management interface exposes
system status to the IoT provider. The IoT provider can specify
policies through the interface, which will be enforced by
the control plane. This enables efficient management without
frequently diving into system details.

F. System Function Use Cases

1) Component Registration: Components need to be regis-
tered to be visible and accessible. Component registration and
management should be handled close to the edge to alleviate
overhead at higher-level controllers. Initially, the component
broadcasts a hello message. The message is sent to the nearest
virtualization agent following default network rules. Upon
reception, the agent looks up or downloads the virtualization
driver, and generates the functional profile of the component.
This information is sent to the direct area controller, who
creates a virtual identity of the component containing its
Uniform Resource Identifier (URI) and functional profile. In
subsequent operations, the controller will command the com-
ponent based on its functional profile. Note that the binding
among component, agent and controller can be reconfigured
in runtime. E.g., if the component moves, a new virtualization
agent may take the charge and report to a new controller.

2) Service Query: There are two ways that an application
can query for a service. First, if the application knows the
service URI, a direct request can be issued through the service
interface. The request will be broadcast to the entire control
plane. If the service is found, all controllers along the broad-
cast path will jointly establish routing between the servicing
component and the application. Second, the application can
request for a generic service (e.g., video surveillance) at or near
a specific location. In this case, the request will be shipped to
the direct controller of the location-of-interest along the control
hierarchy, who will then query its local components and find
one that fulfills the request. In general, direct queries can be

inefficient due to the need for searching the system. To reduce
the overhead of direct queries, the URI can be designed to
encode location information. This, however, requires mobility
management in the addressing level [6].

3) Mobility Management and Failure Handling: FoT han-
dles network events in two steps. First, the event is immedi-
ately tackled by local controller for fast response. E.g., the
leaf controller will quickly handle a local failure by finding
local alternatives to avoid service disruption, such as finding
replacement sensors to cover the area of a failed sensor, or
alternative routing paths to bypass a router failure. Second, if
the event has impact exceeding the local area, or alternatives
cannot be found locally, the event will be reported to upper
levels for further coordination. E.g., a regional failure may
involve multiple controllers to resolve.

Note that our architecture is naturally robust against control
plane failures. When a child controller fails, its controlled area
is automatically handed-over to the parent, which ensures the
continuity of system operation. This way, the only single point
of failure is the root controller, which can be backed-up by
replicas in the cloud. Still, events are handled by the lowest-
possible level of control, which ensures responsiveness and
scalability of the system.

IV. CHALLENGES AND OPPORTUNITIES

A. Deployment

An IoT system cannot be built in one night. Incremental
deployment enables early utilization of system services, while
augmenting the system with new equipment and services
during normal operation. Hence the system can be scaled
based on provider needs. There are several factors that need
to be considered when incrementing the system. First, deploy-
ing new devices incurs various costs including deployment,
management, energy, etc. Second, investment into different
dimensions (new connected things, network devices, or com-
puting nodes) at different locations may result in different
improvements of system performance. Therefore, it is advised
that the IoT provider optimize its deployment utility based on
system-wide measurement of performance.

B. Management

Runtime control plane reconfiguration. One key feature of
our design is that controllers can be automatically deployed
or revoked based on component density. This ensures elastic
control against fluctuating loads and incremental deployment.
However, deploying controllers can be costly, especially at
dense areas where computing power is already scarce. In
this case, the system needs to consider the trade-off between
deploying more local controllers to improve system man-
ageability, or devoting more computing power and energy
to improving application performance. Finding the optimal
deployment and assignment policy subject to capacities and
dynamic loads constitutes an optimization problem to be
addressed.

Network planning and orchestration. In IoT, network is
largely the performance bottleneck due to its limited capacity
and long delay. Network planning techniques such as QoS-
aware routing [7], traffic engineering [12] and interference

5



management [15] have each demonstrated their advantages
in different network environments. However, applying these
techniques in IoT incurs scalability and dynamicity issues.
To resolve the scalability issue, proper traffic classification
and/or aggregation is needed to reduce control plane states.
To resolve dynamicity, both offline and online algorithms need
to be developed; the former achieves resource planning in the
long run, while the latter provides quick responses to network
dynamics. Furthermore, service function chaining should be
considered during network planning, which constitutes the
network orchestration problem.

Service provisioning and orchestration. Service provision-
ing is to fulfill application service requests. Services are
provisioned in several dimensions: connected thing access,
data delivery, and data processing. These can be considered
either separately or jointly. E.g., a real-time processing ap-
plication that analyzes data streams from distributed sensors
would require joint consideration of sensor data access, data
delivery, (potential) in-network pre-processing, and analytics
logic embedding. Factors to be considered include usage
costs, network and computing power, energy consumption,
QoS (bandwidth, latency, etc.), robustness, elasticity, multi-
tenant resource sharing, etc. An important consideration is
to utilize geo-distributed fog nodes to host data processing
and analytics, to achieve early resolution of the massive data
at the edge. A related problem is service orchestration [4],
where an application is decomposed into distributed sub-
services. Optimization algorithms can be developed, but a
general framework that can incorporate different dimensions
and constraints is better preferred.

Energy management and optimization. Energy management
is a crucial part of IoT [11]. First, a large number of connected
things are battery-powered, and hence have very tight energy
budget. Second, deployment of connected things tend to be
more dense in areas that are already congested with devices,
e.g., business districts, urban centers or industrial factories.
Energy consumption of the massive things could cause trouble
to the energy grid that serves other more critical services, such
as lighting or emergency systems. The use of energy harvesters
could alleviate the situation, but are not available in scenarios
like indoor environments. Proper energy management should
jointly consider energy consumption of all components, and
utilize various energy sources including power networks, local
power generators, energy harvesters, and the smart grid. Both
short-term and long-term energy planning is helpful in FoT.

Scalability. With all the flexibility of centralized management
comes the concern of scalability. E.g., using SDN as the
network controller may suffer from the intrinsic scalability
issue of SDN controllers. Our hierarchical control plane serves
as a natural remedy to such an issue. The IoT provider
can deploy multiple levels of SDN controllers, where each
controller controls a local domain, much like the way our
FoT controllers work. In fact, our hierarchical control plane
can be viewed as a generalization of the existing hierarchical
SDN architecture [13], which has already demonstrated the
scalability gain of such a design. Nevertheless, scalability will
remain a problem in IoT even with such an approach, and
surely worths future research and development efforts.

C. Security

Constrained device security. One major challenge in IoT
security is the constrained nature of IoT components. Com-
ponents such as battery-powered sensors or radio frequency
identification (RFID) tags have very limited computing power
and energy budget [8], and thus are hardly capable of running
complex cryptographic algorithms. With the emergence of
IoT-related attacks [5], development of constrained security
mechanisms is both important and urgent. Yet this field of
study is still in its infantry, and requires extensive efforts in
the near future.

Infrastructure-assisted security. One way of realizing effec-
tive yet inexpensive IoT security is to rely on the platform
itself. Such a practice have already been utilized in other
environments like data centers or backbones: by deploying
security functions within the network, traffic can be checked
before reaching the end hosts. Such an approach can be
extended to the IoT scenario. E.g., functions that help establish
secure channels at access points could greatly alleviate the
resource burden on constrained devices, while still receiving
most of the benefits of secure transmission. Despite some early
efforts [14], there has yet been many researches in this field.
We anticipate that infrastructure-assisted security will play a
significant role in IoT security.

Privacy. Privacy is of significant concerns in IoT, since
a majority of IoT applications are based on locations [3].
While existing location privacy mechanisms address this issue
for each single service or application, using a combination
of different location-based services could still leak sensitive
information. This again urges privacy mechanisms natively
embedded into the platform instead of handled by things
owners or application developers. IoT can also evade private
spaces like homes or factories, which could cause leakage of
other sensitive information than location. Proper protection of
such information is yet another direction of future research.

V. CONCLUSIONS

In this article, we presented a novel on-demand IoT
paradigm named FoT, the Fog of Things. The FoT paradigm
extends both the data plane and the control plane to the
network edge, thus achieving many benefits including scala-
bility, responsiveness, robustness, location-awareness, etc. We
designed the FoT architecture which features a flat-structured
virtualization plane and a hierarchical and recursive control
plane. The virtualization plane achieves universal abstraction
of data plane components, while the control plane achieves
scalable and fine-grained control utilizing location-awareness
of IoT services. We explained the detailed operation of each
plane and the system. We also highlighted challenges and
opportunities in deployment, management and security of FoT
respectively. In general, we envisioned the FoT paradigm to be
a major enabler of on-demand IoT, and will play a crucial role
in our smart and connected future. Enabling such a future,
however, requires extensive future work on the development
and implementation of the FoT framework as well as resolving
its various issues such as scalability and security.

REFERENCES

[1] “IoT Market Forecasts,” (accessed on May-15-2018). URL: https:
//www.postscapes.com/internet-of-things-market-size/

6

https://www.postscapes.com/internet-of-things-market-size/
https://www.postscapes.com/internet-of-things-market-size/


[2] A. Botta, W. de Donato, V. Persico, and A. Pescapé, “Integration of
Cloud Computing and Internet of Things: A Survey,” Futur. Gener.
Comput. Syst., vol. 56, pp. 684–700, mar 2016.

[3] L. Chen, S. Thombre, K. Jarvinen, E. S. Lohan, A. Alen-Savikko,
H. Leppakoski, M. Z. H. Bhuiyan, S. Bu-Pasha, G. N. Ferrara,
S. Honkala, J. Lindqvist, L. Ruotsalainen, P. Korpisaari, and H. Ku-
usniemi, “Robustness, Security and Privacy in Location-Based Services
for Future IoT: A Survey,” IEEE Access, vol. 5, pp. 8956–8977, 2017.

[4] M. Chiang, S. Ha, C.-L. I, F. Risso, and T. Zhang, “Clarifying
Fog Computing and Networking: 10 Questions and Answers,” IEEE
Commun. Mag., vol. 55, no. 4, pp. 18–20, apr 2017.

[5] S. Cobb, “10 Things to Know About the October 21 IoT DDoS At-
tacks,” (accessed on May-15-2018). URL: https://www.welivesecurity.
com/2016/10/24/10-things-know-october-21-iot-ddos-attacks/

[6] J. Eriksson, M. Faloutsos, and S. V. Krishnamurthy, “DART: Dy-
namic Address RouTing for Scalable Ad Hoc and Mesh Networks,”
IEEE/ACM Trans. Netw., vol. 15, no. 1, pp. 119–132, feb 2007.

[7] J. W. Guck, A. Van Bemten, M. Reisslein, and W. Kellerer, “Unicast
QoS Routing Algorithms for SDN: A Comprehensive Survey and
Performance Evaluation,” IEEE Commun. Surv. Tutorials, vol. 20, no. 1,
pp. 388–415, 2018.

[8] H. Hellaoui, M. Koudil, and A. Bouabdallah, “Energy-efficient Mech-
anisms in Security of the Internet of Things: A Survey,” Comput.
Networks, vol. 127, pp. 173–189, nov 2017.

[9] P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on Fog Computing:
Architecture, Key Technologies, Applications and Open Issues,” J.
Netw. Comput. Appl., vol. 98, no. September, pp. 27–42, nov 2017.

[10] V. Issarny, G. Bouloukakis, N. Georgantas, and B. Billet, “Revisiting
Service-Oriented Architecture for the IoT: A Middleware Perspective,”
in Proc. ICSOC, 2016, pp. 3–17.

[11] N. Kaur and S. K. Sood, “An Energy-Efficient Architecture for the
Internet of Things (IoT),” IEEE Syst. J., vol. 11, no. 2, pp. 796–805,
jun 2017.

[12] A. Mendiola, J. Astorga, E. Jacob, and M. Higuero, “A Survey on the
Contributions of Software-Defined Networking to Traffic Engineering,”
IEEE Commun. Surv. Tutorials, vol. 19, no. 2, pp. 918–953, 2017.

[13] M. Moradi, W. Wu, L. E. Li, and Z. M. Mao, “SoftMoW: Recursive and
Reconfigurable Cellular WAN Architecture,” in Proc. ACM CoNEXT,
2014, pp. 377–390.

[14] S. Nair, S. Abraham, and O. A. Ibrahim, “Security Fusion: A New
Security Architecture for Resource-Constrained Environments,” in Proc.
USENIX HotSec, 2011, pp. 2–2.

[15] M. Noura and R. Nordin, “A Survey on Interference Management
for Device-to-Device (D2D) Communication and Its Challenges in 5G
Networks,” J. Netw. Comput. Appl., vol. 71, pp. 130–150, aug 2016.

Ruozhou Yu (Student Member 2013) received his
B.S. degree from Beijing University of Posts and
Telecommunications, Beijing, China, in 2013. Cur-
rently he is a Ph.D student in the School of Comput-
ing, Informatics, and Decision Systems Engineering
at Arizona State University. His research interests
include network virtualization, software-defined net-
working, cloud and data center networks, edge com-
puting and internet-of-things, etc.

Guoliang Xue (Member 1996, Senior Member 1999,
Fellow, 2011) is a Professor of Computer Science
and Engineering at Arizona State University. He
received the Ph.D degree (1991) in computer sci-
ence from the University of Minnesota, Minneapolis,
USA. His research interests include survivability,
security, and resource allocation issues in networks.
He is an Editor of IEEE Network and the Area Editor
of IEEE Transactions on Wireless Communications
for the area of Wireless Networking.

Vishnu Teja Kilari (Student Member 2013) re-
ceived his M.S. degree from Arizona State Uni-
versity, Tempe, Arizona, U.S.A in 2013. Currently
he is a Ph.D student in the School of Computing,
Informatics, and Decision Systems Engineering at
Arizona State University. His research interests in-
clude Botnets, Smart Grid security and hardware
assisted security.

Xiang Zhang (Student Member 2013) received his
B.S. degree from University of Science and Technol-
ogy of China, Hefei, China, in 2012. Currently he is a
Ph.D student in the School of Computing, Informat-
ics, and Decision Systems Engineering at Arizona
State University. His research interests include net-
work economics and game theory in crowdsourcing
and cognitive radio networks.

7

https://www.welivesecurity.com/2016/10/24/10-things-know-october-21-iot-ddos-attacks/
https://www.welivesecurity.com/2016/10/24/10-things-know-october-21-iot-ddos-attacks/

