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IoT: The Future Internet
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• IoT is the future Internet that connects every aspect of our work
and life.
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New Threats?
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Top: https://www.techrepublic.com/article/ddos-attacks-increased-91-in-2017-thanks-to-iot/
Right: https://www.welivesecurity.com/2016/10/24/10-things-know-october-21-iot-ddos-attacks/
Left: https://securityintelligence.com/the-weaponization-of-iot-rise-of-the-thingbots/
Bottom: https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/

IoT securit
y is urgent

!



What’s the problem?

• Careless people
• Default /Weak username + password

• Mirai Botnet: largest-ever DDoS attack on Dyn, Oct 21, 2016
• Obsolete firmware / software
• Misused security settings

• Authorization, access control, network settings,…
• Data security

• Constrained and vulnerable devices
• Computing power
• Energy
• Memory
• Hardware deficits
• Unrevealed vulnerabilities
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Current Progresses

• Lightweight crypto for constrained devices
• Active on-going research efforts
• Not quite practical in major IoT scenarios…

• Difficult on small devices: RFID, light bulbs, smart switches, cameras,…
• Cannot protect system from careless/malicious users

• Security offloading
• Offload part of / all security functions to helper nodes in the network

• Fog nodes, cloud, security providers,…
• Can protect both users and the system

• User-oriented security vs. system-oriented security
• Inevitable security risk of offloading

• Unprotected/unmonitored traffic before processing
• Prolonged security procedure: more vulnerable to opportunistic attacks
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Our Standing

• Operator as a central security enforcer
• Monitors network-wide user traffic

• Traffic classification based on access/exit, QoS, policy
• Aggregate periodic network status and user demand reports

• Security function deployment / adjustment
• Minimize security risk of offloading
• Based on overall cost budget, predicted user demands and network status
• Can be periodically adjusted based on historical data

• User traffic steering
• Direct user traffic to nearest / selected security functions
• Different steering techniques can be used here
• In this work we assume nearest selection and shortest path routing
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Methodology Overview
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User Demands
• Traffic volumes at APs

Network Status
• Topology & availability

Abstract System Model
• System uncertainties
• Security risk model
• Robustness model

Optimization Framework
• Benders’ (row) decomposition
• Efficient subproblem solving

Security Deployment
• Subject to cost budget

Traffic Steering
• Selected security func.

Inputs:

System-wide
Optimization:

Outputs:
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IoT Network: A General Model

• Challenge: heterogeneous network environments

• Model: general directed graph G=(V, E), with fog nodes F and APs A
• Weights: hop, delay, negative log safe probability,…
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Wireless RANs:
• Geo-distributed
• Limited capacity
• Interference

Backbones:
• Large-scale
• High latency
• ISP policies

Edge Network:
• Complex topo
• Distributed
• Dynamic load



Measurement of Security Risk

• User demands: # devices at APs
• Extensible to traffic volumes, different device types, etc.

• Security risk:
• Average amount of unmonitored/unprotected traffic per unit demand.
• Assuming shortest-path to nearest security functions:

• Security risk of device = shortest path distance to nearest security function.
• Security risk of system = ∑ distances / total demand
• Extensible to maximum distance per demand, etc.

• What affect security risk:
• Different user demands at APs
• Different topology information
• Deployment of security functions
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Uncertainties in IoT

• IoT is dynamic: both user demands and topology
• Fluctuating user demands, due to

• New devices, device mobility, events, failures and maintenance,…
• Model: random variables D = { da ∈ ℝ* | a ∈A }

• Volatile topology, due to
• Device mobility, interference, congestion, failures and maintenance,…

• Model: random variablesY = { ye ∈ {0, 1} | e ∈ E }

• Realization: observed values of the random variables
• # = ( $D, $Y ): a realization of system state

• Security risk R(X, D, Y): a function of random variables D andY.
• Depends on security deployment X = { xv ∈ {0, 1} | v ∈ F }.
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SO and CVaR

• Stochastic Optimization (SO): optimize a function in presence
of randomness (random objective and/or random constraints)
• Traditional approach: expectation optimization

• Issue: unbounded risk in rare but unfortunate scenarios
• E.g., abnormal demands due to public events, rare large-scale failures, …

• How to model these unfortunate scenarios?
• Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR):

• Widely used in economics and finance
• VaR!(R) = min { c ∈ ℝ | R does not exceed c with at least ! prob. }
• CVaR!(R) = $[ R | R ≥ VaR!(R) ]

• Expectation of R in the worst (1-!) scenarios

• Our approach: optimize both expectation and CVaR
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minX $[ R(X, D, Y) ]

minX $[ R(X, D, Y) ] + % CVaR!( R(X, D, Y) )



Rockafellar-Uryasev Theorem

• Computing CVaR requires the value of VaR?
• Rockafellar-Uryasev [RU2000]:
• Computation of CVaR does not needVaR beforehand.

• VaR!(R) = argminc { c + "
"#$%[ (R - c)+ ] }: jointly computed

• (z)+: max{z, 0}

• A transformed formulation for our problem

• (because both problems are minimizations…)
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CVaR!(R) = minc { c + "
"#$%[ (R - c)+ ] }

[RU2000] R. T. Rockafellar and S. Uryasev, “Optimization of Conditional Value-at-Risk,” J. 
Risk, vol. 2, pp. 21–41, 2000.

minX,c %[ R(X, D, Y) ] + & ( c + "
"#$%[ (R - c)+ ] )



Sample Average Approximation

• How to optimize R(X, D, Y) in face of D andY?
• Challenge 1: hard to model underlying distribution.
• Challenge 2: R(X, D, Y) hard to write in closed-form.

• Sample Average Approximation (SAA):
• Approximate expectations as sample averages
• How to sample D andY: historical network measurement data

• Regard historical data as samples from the real-world distributions

• Scenario-based optimization: generate N samples !1,…,!N

• "#$ = #(', )*$, "+$): security risk of scenario i, for i=1…N.
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The Overall Problem

• Master Problem

• Slave Problem ( !"#)
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Decomposition Framework

• Two-stage SO:
• Master Problem: integer programming, size linear to |F| (# fog nodes)
• Slave Problem: linear programming, size linear to N·|A|·|F| (N: # samples)

• Decomposable to N independent per-scenario LPs of sizes |A|·|F|
• In practice, N >> |F|:

• # fog nodes: let’s say 10-100
• # samples: at least 1000 to get a good approximation

• Benders’ decomposition: (Row Generation) In each iteration, add new
constraints (cuts) to the problem that push the master towards the optimal:
• INIT: feasible master solution; then proceed in iterations:

• Solve slave dual problem based on master solution (UB).
• If dual slave unbounded, add feasibility cut to master;
if dual slave optimal, add optimality cut to master.

• Solve updated master (LB).
• Until UB – LB < !.
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Speeding-up Slave Dual Solving

• How to solve the slave dual?
1. Solve the whole linear program.

• Cubic time complexity to entire program size N·|A|·|F|.
2. Solve for each independent scenario, then aggregate.

• Cubic time complexity to per-scenario program size |A|·|F|.
3. Closed-form solution for each scenario, then aggregate.

• Linear time to program size!
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Simulation Settings

• Three different experiment settings.
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Expectation vs. CVaR
• Social Organization Framework (SoF) [Ning2011]-based Topology

• Uniform 99% network link reliabilities

• Time varying Gamma distribution user demands

Benders’ vs. Random vs. Greedy
• Synthesized Dartmouth College topology from AP map

• Uniform 99% network link reliabilities

• 1-yr real user data: 4-mon for optz., 8-mon for validation

Benders’ vs. Exhaustive Search
• Random Waxman graphs with !="=0.3, varying # nodes

• Uniform 99% network link reliabilities

• Erlang(1, 2) distribution user demands

[Ning2011] H. Ning and Z. Wang, “Future Internet of Things Architecture: Like Mankind Neural System 

or Social Organization Framework?,” IEEE Commun. Lett., vol. 15, no. 4, pp. 461–463, Apr. 2011.

Dartmouth Dataset: https://crawdad.org/ dartmouth/campus/20090909 

Parameters:
• !=95%

• #=100k

(CVaR only

except noted)



Result: Expectation vs. CVaR
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Expectation vs. CVaR

• CVaR approaches mean
when !→0.

• There is a trade-off
between expectation
and CVaR.

• CVaR can be 1.5x larger if
optimizing expectation
alone.



Result: Optimality & Overhead

23

Running Time
• Benders’ much more efficient

than exhaustive search.

• Our closed-form solution
achieves great speed-up over
solving slave duals by LP.

Slave Solving Time
• Speed-up is indeed due to our

slave dual solving.



Result: Synthesized Data Simulation
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Training CVaR
• Benders’ much better than

greedy and random.

Testing CVaR
• Optimal for training may not be

optimal for testing
• Both network and user

demands are evolving…
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Conclusions

• The IoT security challenge
• Lightweight crypto has a long way to go
• Security offloading brings inevitable risk

• Modeling IoT security with offloading
• Uncertainty model
• Expectation vs. CVaR
• Scenario-based optimization

• Robust security deployment algorithm
• Benders’ decomposition
• Speed-up per-iteration solving

• Simulations: outperforming and efficient solution!
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Thank you very much!
Q&A?
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