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IoT: The Future Internet

* loT is the future Internet that connects every aspect of our work
and life.
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New Threats?
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Internet activity in the US. Stephen Cobb investigates.

ide the infamous Mirai loT
Botnet: A Retrospective Analysis

14 Dec 2017 by Guest Author.

o X CINE EE

Top: https://www.techrepublic.com/article/ddos-attacks-increased-91-in-2017-thanks-to-iot/
AR]ZONA STATE Right: https://www.welivesecurity.com/2016/10/24/10-things-know-october-21-iot-ddos-attacks/
UNIVERSITY Left: https://securityintelligence.com/the-weaponization-of-iot-rise-of-the-thingbots/ 4

Bottom: https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/




What's the problem?

* Careless people
* Default / Weak username + password
* Mirai Botnet: largest-ever DDoS attack on Dyn, Oct 21,2016
* Obsolete firmware / software
* Misused security settings
* Authorization, access control, network settings, ...
* Data security

°* Constrained and vulnerable devices
* Computing power
* Energy
* Memory

Hardware deficits

Unrevealed vulnerabilities
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Current Progresses

* Lightweight crypto for constrained devices

* Active on-going research efforts

* Not quite practical in major loT scenarios...
* Difficult on small devices: RFID, light bulbs, smart switches, cameras, ...
* Cannot protect system from careless/malicious users

* Security offloading

* Offload part of / all security functions to helper nodes in the network
* Fog nodes, cloud, security providers, ...

* Can protect both users and the system
* User-oriented security vs. system-oriented security

* Inevitable security risk of offloading
* Unprotected/unmonitored traffic before processing
* Prolonged security procedure: more vulnerable to opportunistic attacks
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Our Standing

* Operator as a central security enforcer

* Monitors network-wide user traffic
* Traffic classification based on access/exit, QoS, policy
* Aggregate periodic network status and user demand reports

* Security function deployment / adjustment
* Minimize security risk of offloading
* Based on overall cost budget, predicted user demands and network status
* Can be periodically adjusted based on historical data

* User traffic steering
* Direct user traffic to nearest / selected security functions
* Different steering techniques can be used here
* In this work we assume nearest selection and shortest path routing
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Methodology Overview

User Demands
Traffic volumes at APs

Network Status
Topology & availability

System-wide
Optimization:

Abstract System Model
* System uncertainties
e Security risk model
* Robustness model

Optimization Framework
* Benders’ (row) decomposition
e Efficient subproblem solving

Outputs:

Security Deployment
Subject to cost budget

Traffic Steering
Selected security func.
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IoT Network: A General Model

* Challenge: heterogeneous network environments
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Wireless RANSs: Edge Network: Backbones:
* Geo-distributed * Complex topo * Large-scale
* Limited capacity e Distributed * High latency
* Interference * Dynamic load * ISP policies

* Model: general directed graph G=(V, E), with fog nodes F and APs A
* Weights: hop, delay, negative log safe probability, ...
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Measurement of Security Risk

* User demands: # devices at APs
* Extensible to traffic volumes, different device types, etc.

* Security risk:
* Average amount of unmonitored/unprotected traffic per unit demand.
* Assuming shortest-path to nearest security functions:

* Security risk of device = shortest path distance to nearest security function.

* Security risk of system = ) distances / total demand
* Extensible to maximum distance per demand, etc.

* What affect security risk:
* Different user demands at APs
* Different topology information
* Deployment of security functions
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Uncertainties in IoT

* loT is dynamic: both user demands and topology

* Fluctuating user demands, due to
* New devices, device mobility, events, failures and maintenance, ...

Model: random variables D = {d, e R"|a €A}

Volatile topology, due to
* Device mobility, interference, congestion, failures and maintenance, ...

Model: random variablesY ={y. € {0, 1} | e € E }

Realization: observed values of the random variables

I1 = (D, Y ):arealization of system state

* Security risk R(X, D, Y): a function of random variables D andY.
* Depends on security deployment X ={x, € {0, 1} |veEF }.
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SO and CVaR

* Stochastic Optimization (SO): optimize a function in presence
of randomness (random objective and/or random constraints)

* Traditional approach: expectation optimization
miny E[R(X,D, Y) ]
* Issue: unbounded risk in rare but unfortunate scenarios
* E.g.,abnormal demands due to public events, rare large-scale failures, ...

How to model these unfortunate scenarios?
Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR):

* Widely used in economics and finance
* VaR,(R) = min { c € R | R does not exceed c with at least « prob.}
* CVaR, (R) = E[ R| R 2VaR,(R) ]

* Expectation of R in the worst (|-a) scenarios

Our approach: optimize both expectation and CVaR
miny E[R(X,D, Y) ]+ p CVaR,(R(X,D, Y))
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Rockafellar-Uryasev Theorem

* Computing CVaR requires the value of VaR!?

* Rockafellar-Uryasev [ru2000;:
* Computation of CVaR does not need VaR beforehand.

CVaR,(R) = min_{c + ﬁ[E[ R-o)*1}

* VaR,(R) = argmin {c + iIE[ (R - ©)* ] }:jointly computed

* (2)*: max{z, 0}

* A transformed formulation for our problem
minxe  E[R(,D,Y)]+p (c+—E[(R-0)"])

* (because both problems are minimizations...)

[RU2000] R. T. Rockafellar and S. Uryasev, “Optimization of Conditional Value-at-Risk,” J.
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Sample Average Approximation

* How to optimize R(X, D, Y) in face of D and Y?

* Challenge I:hard to model underlying distribution.
* Challenge 2:R(X, D, Y) hard to write in closed-form.

* Sample Average Approximation (SAA):
* Approximate expectations as sample averages

* How to sample D andY: historical network measurement data
* Regard historical data as samples from the real-world distributions

* Scenario-based optimization: generate N samples I1, ..., Il

miny . Nz i+p (C + ——z (R — C)+)

* R, = R(X,D;,Y;): security risk of scenario i, for i=1...N.
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The Overall Problem

* Master Problem

s.t. 2 CyXy < b
v

* Slave Problem (R;)

R(X7 Eia ?Z) —

: 1 i cd (N g
min - S: d, S: dist, (v)t: (v)
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s.t. Zté(v)zl, Va;

th (v) < @y, Va,v;
t'(v) €[0,1], Va,v.
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Decomposition Framework

* Two-stage SO:

* Master Problem:integer programming, size linear to |F| (# fog nodes)

* Slave Problem:linear programming, size linear to N:|A|:|F| (N:# samples)
* Decomposable to N independent per-scenario LPs of sizes |A|-|F|

* In practice, N >> |F|:
* # fog nodes: let’s say 10-100
* # samples: at least 1000 to get a good approximation

* Benders’ decomposition: (Row Generation) In each iteration, add new
constraints (cuts) to the problem that push the master towards the optimal:

* INIT: feasible master solution; then proceed in iterations:
* Solve slave dual problem based on master solution (UB).

* If dual slave unbounded, add feasibility cut to master;
if dual slave optimal, add optimality cut to master.

* Solve updated master (LB).
* UntilUB-LB<e.
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Speeding-up Slave Dual Solving

* How to solve the slave dual?

|. Solve the whole linear program.
* Cubic time complexity to entire program size N-|A||F|.
2. Solve for each independent scenario, then aggregate.
* Cubic time complexity to per-scenario program size |A||F|.
3. Closed-form solution for each scenario, then aggregate.
* Linear time to program size!

p . et
if > otdist’[1] > ¢
Ai=] 1-a za: diste[1] 2 (14a)
0 otherwise
¢i(a)=0dist; [2](1 + \i) (14b)
ETIN i if v = v’[1]
§° (dist!, [2] —dist, 1+);) ! a
yi(a,v)= (dist,, [2] —dist,, (v))( ) or o =0 (14¢)

0 otherwise
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Simulation Settings

* Three different experiment settings.

r

Expectation vs. CVaR
Social Organization Framework (SoF) [Ning2011]-based Topology
Uniform 99% network link reliabilities
Time varying Gamma distribution user demands

Benders’ vs. Exhaustive Search
Random Waxman graphs with a=£=0.3, varying # nodes
Uniform 99% network link reliabilities
Erlang(1, 2) distribution user demands

Benders’ vs. Random vs. Greedy
Synthesized Dartmouth College topology from AP map
Uniform 99% network link reliabilities
1-yr real user data: 4-mon for optz., 8-mon for validation

Parameters:
a=95%
p=100k
(CVaR only
except noted)

[Ning2011] H. Ning and Z. Wang, “Future Internet of Things Architecture: Like Mankind Neural System
& ARIZONA STATE or Social Organization Framework?,” IEEE Commun. Lett., vol. 15, no. 4, pp. 461-463, Apr. 2011. 21
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Result:

Expectation vs. CVaR
2.2 -
L o—e CVaR (p=100k) Expectation vs. CVaR
2.0-‘ ®-m CVaR (p=0)
H o—e Mean (p=100Kk) .
1.80 e-a Mean (p=0) | CVaR approaches mean
' when a—0.

Quantile (1—«) in percentage
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There is a trade-off

between expectation
and CVaR.

CVaR can be 1.5x larger if

optimizing expectation
alone.
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Result: Optimality & Overhead
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Result: Synthesized Data Simulation
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Conclusions

* The loT security challenge
* Lightweight crypto has a long way to go
* Security offloading brings inevitable risk

* Modeling loT security with offloading
* Uncertainty model
* Expectation vs. CVaR
* Scenario-based optimization

* Robust security deployment algorithm
* Benders’ decomposition

* Speed-up per-iteration solving

* Simulations: outperforming and efficient solution!
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Thank you very much!
Q&A?
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