Deploying Robust Security in IoT

Ruozhou Yu, **Guoliang Xue**, Vishnu Teja Kilari, Xiang Zhang Arizona State University

Outlines

IoT: The Future Internet

 IoT is the future Internet that connects every aspect of our work and life.

New Threats?

Top: https://www.techrepublic.com/article/ddos-attacks-increased-91-in-2017-thanks-to-iot/ Right: https://www.welivesecurity.com/2016/10/24/10-things-know-october-21-iot-ddos-attacks/ Left: https://securityintelligence.com/the-weaponization-of-iot-rise-of-the-thingbots/ Bottom: https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/

4

What's the problem?

Careless people

- Default / Weak username + password
 - Mirai Botnet: largest-ever DDoS attack on Dyn, Oct 21, 2016
- Obsolete firmware / software
- Misused security settings
 - Authorization, access control, network settings, ...
- Data security

Constrained and vulnerable devices

- Computing power
- Energy
- Memory
- Hardware deficits
- Unrevealed vulnerabilities

Current Progresses

• Lightweight crypto for constrained devices

- Active on-going research efforts
- Not quite practical in major IoT scenarios...
 - Difficult on small devices: RFID, light bulbs, smart switches, cameras, ...
 - Cannot protect system from careless/malicious users

Security offloading

- Offload part of / all security functions to helper nodes in the network
 - Fog nodes, cloud, security providers, ...
- Can protect both users and the system
 - User-oriented security vs. system-oriented security
- Inevitable security risk of offloading
 - Unprotected/unmonitored traffic before processing
 - Prolonged security procedure: more vulnerable to opportunistic attacks

Our Standing

- Operator as a central security enforcer
 - Monitors network-wide user traffic
 - Traffic classification based on access/exit, QoS, policy
 - Aggregate periodic network status and user demand reports
 - Security function deployment / adjustment
 - Minimize security risk of offloading
 - Based on overall cost budget, predicted user demands and network status
 - Can be periodically adjusted based on historical data
 - User traffic steering
 - Direct user traffic to nearest / selected security functions
 - Different steering techniques can be used here
 - In this work we assume nearest selection and shortest path routing

Methodology Overview

Outlines

IoT Network: A General Model

• Challenge: heterogeneous network environments

- Model: general directed graph G=(V, E), with fog nodes F and APs A
 - Weights: hop, delay, negative log safe probability, ...

Measurement of Security Risk

- User demands: # devices at APs
 - Extensible to traffic volumes, different device types, etc.
- Security risk:
 - Average amount of unmonitored/unprotected traffic per unit demand.
 - Assuming shortest-path to nearest security functions:
 - Security risk of device = shortest path distance to nearest security function.
 - Security risk of system = \sum distances / total demand
 - Extensible to maximum distance per demand, etc.
- What affect security risk:
 - Different user demands at APs
 - Different topology information
 - Deployment of security functions

Uncertainties in IoT

- IoT is dynamic: both user demands and topology
 - Fluctuating user demands, due to
 - New devices, device mobility, events, failures and maintenance, ...
 - **Model**: random variables $D = \{ d_a \in \mathbb{R}^* \mid a \in A \}$
 - Volatile topology, due to
 - Device mobility, interference, congestion, failures and maintenance, ...
 - Model: random variables $Y = \{ y_e \in \{0, I\} \mid e \in E \}$
 - **Realization**: observed values of the random variables
 - $\Pi = (\overline{D}, \overline{Y})$: a realization of system state
- Security risk R(X, D, Y): a function of random variables D and Y.
 - Depends on security deployment X = { $x_v \in \{0, I\} \mid v \in F$ }.

SO and CVaR

- Stochastic Optimization (SO): optimize a function in presence of randomness (random objective and/or random constraints)
 - Traditional approach: expectation optimization

 $\min_{X} \qquad \mathbb{E}[R(X, D, Y)]$

- **Issue**: unbounded risk in rare but unfortunate scenarios
 - E.g., abnormal demands due to public events, rare large-scale failures, ...
- How to model these unfortunate scenarios?
- Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR):
 - Widely used in economics and finance
 - $VaR_{\alpha}(R) = min \{ c \in \mathbb{R} | R \text{ does not exceed } c \text{ with at least } \alpha \text{ prob.} \}$
 - $CVaR_{\alpha}(R) = \mathbb{E}[R | R \ge VaR_{\alpha}(R)]$
 - Expectation of R in the worst $(I-\alpha)$ scenarios
- **Our approach**: optimize both expectation and CVaR min_X $\mathbb{E}[R(X, D, Y)] + \rho CVaR_{\alpha}(R(X, D, Y))$

Rockafellar-Uryasev Theorem

- Computing CVaR requires the value of VaR?
- Rockafellar-Uryasev [RU2000]:
 - Computation of CVaR does not need VaR beforehand.

$$CVaR_{\alpha}(R) = \min_{c} \{ c + \frac{1}{1-\alpha} \mathbb{E}[(R - c)^{+}] \}$$

• VaR_{$$\alpha$$}(R) = argmin_c { c + $\frac{1}{1-\alpha}\mathbb{E}[(R - c)^+]$ }: jointly computed

•
$$(z)^+: \max\{z, 0\}$$

• A transformed formulation for our problem

min_{X,c} $\mathbb{E}[R(X, D, Y)] + \rho (c + \frac{1}{1-\alpha}\mathbb{E}[(R - c)^+])$

• (because both problems are minimizations...)

Sample Average Approximation

- How to optimize R(X, D, Y) in face of D and Y?
 - Challenge I: hard to model underlying distribution.
 - **Challenge 2**: R(X, D, Y) hard to write in closed-form.
- Sample Average Approximation (SAA):
 - Approximate expectations as sample averages
 - How to sample D and Y: historical network measurement data
 - Regard historical data as samples from the real-world distributions
- Scenario-based optimization: generate N samples $\Pi_1, ..., \Pi_N$

$$\min_{X,c} \frac{1}{N} \sum_{i=1}^{N} \bar{R}_{i} + \rho \left(c + \frac{1}{1-\alpha} \frac{1}{N} \sum_{i=1}^{N} (\bar{R}_{i} - c)^{+} \right)$$

• $\overline{R}_i = R(X, \overline{D}_i, \overline{Y}_i)$: security risk of scenario i, for i=1...N.

The Overall Problem

Master Problem

$$\min_{X,c} \qquad \frac{1}{N} \sum_{i=1}^{N} \overline{R}_{i} + \rho \left(c + \frac{1}{1-\alpha} \frac{1}{N} \sum_{i=1}^{N} (\overline{R}_{i} - c)^{+} \right)$$
s.t.
$$\sum_{v} c_{v} x_{v} \leq b$$

• Slave Problem (\overline{R}_i)

$$R(X, \overline{D}_i, \overline{Y}_i) =$$

$$\min_{t} \quad \frac{1}{d_{\text{sum}}^i} \sum_{a \in A} d_a^i \sum_{v \in F} \text{dist}_a^i(v) t_a^i(v)$$
(1a)

s.t.
$$\sum_{v} t_a^i(v) = 1, \quad \forall a;$$
 (1b)

$$t_a^i(v) \le x_v, \qquad \forall a, v;$$
 (1c)

$$t_a^i(v) \in [0,1], \quad \forall a, v.$$
(1d)

Outlines

Decomposition Framework

- Two-stage SO:
 - **Master Problem**: integer programming, size linear to |F| (# fog nodes)
 - Slave Problem: linear programming, size linear to $N \cdot |A| \cdot |F|$ (N: # samples)
 - Decomposable to N independent per-scenario LPs of sizes $|A|\cdot|F|$
 - In practice, N >> |F|:
 - # fog nodes: let's say 10-100
 - # samples: at least 1000 to get a good approximation
 - **Benders' decomposition**: (Row Generation) In each iteration, add new constraints (cuts) to the problem that push the master towards the optimal:
 - INIT: feasible master solution; then proceed in iterations:
 - Solve slave dual problem based on master solution (UB).
 - If dual slave unbounded, add feasibility cut to master; if dual slave optimal, add optimality cut to master.
 - Solve updated master (LB).
 - Until UB LB < ϵ .

Speeding-up Slave Dual Solving

- How to solve the slave dual?
 - I. Solve the whole linear program.
 - Cubic time complexity to entire program size $N \cdot |A| \cdot |F|$.
 - 2. Solve for each independent scenario, then aggregate.
 - Cubic time complexity to per-scenario program size |A|·|F|.
 - 3. Closed-form solution for each scenario, then aggregate.
 - Linear time to program size!

$$\begin{split} \lambda_{i} &= \begin{cases} \frac{\rho}{1-\alpha} & \text{if } \sum_{a} \delta_{a}^{i} \text{dist}_{a}^{i}[1] \geq c \\ 0 & \text{otherwise} \end{cases} \end{split} \tag{14a} \\ \phi_{i}(a) &= \delta_{a}^{i} \text{dist}_{a}^{i}[2](1+\lambda_{i}) & (14b) \\ \mu_{i}(a,v) &= \begin{cases} \delta_{a}^{i} (\text{dist}_{a}^{i}[2] - \text{dist}_{a}^{i}(v))(1+\lambda_{i}) & \text{if } v = v_{a}^{i}[1] \\ \text{or } x_{v} = 0 & (14c) \\ 0 & \text{otherwise} \end{cases} \end{split}$$

Outlines

Simulation Settings

Three different experiment settings.

Expectation vs. CVaR

- Social Organization Framework (SoF) [Ning2011]-based Topology
- Uniform 99% network link reliabilities
- Time varying Gamma distribution user demands

Benders' vs. Exhaustive Search

- Random Waxman graphs with $\alpha = \beta = 0.3$, varying # nodes
- Uniform 99% network link reliabilities
- Erlang(1, 2) distribution user demands

Benders' vs. Random vs. Greedy

- Synthesized Dartmouth College topology from AP map
- Uniform 99% network link reliabilities
- 1-yr real user data: 4-mon for optz., 8-mon for validation

Parameters:

- *α*=95%
- ho = 100 k(CVaR only except noted)

Result: Expectation vs. CVaR

Expectation vs. CVaR

- CVaR approaches mean when $\alpha \rightarrow 0$.
- There is a trade-off between expectation and CVaR.
- CVaR can be 1.5x larger if optimizing expectation alone.

Result: Optimality & Overhead

Result: Synthesized Data Simulation

Outlines

Conclusions

- The IoT security challenge
 - Lightweight crypto has a long way to go
 - Security offloading brings inevitable risk
- Modeling IoT security with offloading
 - Uncertainty model
 - Expectation vs. CVaR
 - Scenario-based optimization
- Robust security deployment algorithm
 - Benders' decomposition
 - Speed-up per-iteration solving
- Simulations: outperforming and efficient solution!

Thank you very much! Q&A?

