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Abstract—Popularization of the Internet-of-Things (IoT) has

brought widespread concerns on IoT security, especially in face

of several recent security incidents related to IoT devices. Due

to the resource-constrained nature of many IoT devices, security

offloading has been proposed to provide good-enough security for

IoT with minimum overhead on the devices. In this paper, we

investigate the inevitable risk associated with security offloading:

the unprotected and unmonitored transmission from IoT devices

to the offloaded security mechanisms. An important challenge in

modeling the security risk is the dynamic nature of IoT due to

demand fluctuations and infrastructure instability. We propose

a stochastic model to capture both the expected and worst-case

security risks of an IoT system. We then propose a framework

to efficiently address the optimal robust deployment of security

mechanisms in IoT. We use results from extensive simulations

to demonstrate the superb performance and efficiency of our

approach compared to several other algorithms.
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I. INTRODUCTION

Despite its powerfulness and popularity, the current IoT
is facing many challenges, among which a major one is the
emerging concern on IoT security and privacy. In regard to
security, the massive number of connected smart devices in
IoT, which is indeed its biggest strength, is also a huge
potential threat. On one hand, providing fine-grained security
to a large number of geo-distributed devices is non-trivial,
especially given the limited resources on each of these devices.
On the other hand, these massive devices, once compromised,
can be used as a powerful weapon against the system itself,
for example, by launching large-scale distributed denial-of-
service (DDoS) attacks. In fact, the digital world has already
witnessed the devastating effect of such attacks in several
recent incidents [32]. Privacy becomes part of the concern
when IoT-connected devices infiltrate various private spaces,
including homes, factories, and hospitals.

Enforcing security and privacy in IoT is difficult. The main
reason, as aforementioned, is the limited resources (computing
resource, memory, battery) on connected devices. Due to
this, IoT devices can hardly run conventional cryptographic
algorithms. Currently, there are two directions that deal
with this issue. The first direction is to develop lightweight
yet strong-enough cryptographic algorithms for IoT devices.
Unfortunately, current advances along this direction is yet
enough to conquer the overhead issue of cryptography in
constrained environments [31]. The second direction is to
offload security to the cloud [6], [37]. This is based on recent
advances in network function virtualization (NFV), which can
virtualize security mechanisms as software components to be
run on general-purpose platforms [20]. However, cloud-based
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offloading has several drawbacks. First, cloud-based security
leaves data transmission as a major vulnerability. In other
words, the traffic from IoT devices to the cloud is unpro-
tected, leaving room for data interception, manipulation and
injection attacks, especially when the traffic needs to traverse
the Internet before reaching the cloud. Second, cloud-based
security cannot prevent saturation attacks at the early stage,
such as DDoS attacks from IoT devices. In fact, a DDoS attack
may even invalidate the cloud by saturating its bandwidth,
rendering the whole security system unusable. Third, the cloud
suffers from high latency which increases the probability of
device-oriented oppotunistic attacks, for instance, the recently
revealed Meltdown and Spectre hardware attacks [12] that can
affect an extremely wide spectrum of IoT devices. The cloud
is not capable of responding in real-time to incidents on IoT
devices. Last but not least, the cloud becomes a single point
of failure in the system. An attack compromising the cloud
itself can have control over all the devices, including those in
private spaces like homes or factories.

Powered by fog computing, a new approach to IoT security
emerges. Fog computing offers in-network computing hard-
ware in the edge network, which enables edge offloading of
security mechanisms near the end devices. Hence it can largely
realize fine-grained and real-time security, while avoiding high
latency, high bandwidth usage and a single point of failure.
That being said, fog-based security also has its limitations.
First of all, the cost of using fog computing is generally higher
than that of using the cloud. This is because fog nodes are
commonly deployed in areas that are already dense with other
devices, and hence will have higher deployment, operation
and energy costs. Due to this, fog resources are still limited
in each area, though much more abundant than IoT devices.
Second, fog-based security still leaves some vulnerabilities in
the early stage of data transmission. The unprotected and/or
unmonitored traffic can cause various threats to the devices
and the system, as we detail in Sec. III-B.

An ideal architecture for IoT security should jointly make
use of end device-, cloud- and fog-based security. Among
these, fog-based security has the highest flexibility in the
trade-off between security and cost, and hence should be
carefully optimized by the IoT operator. In this work we focus
on modeling and formulating the security offloading problem
from the perspective of fog computing. Given a limited cost
budget, the operator would want to deploy security functions
on distributed fog nodes, in order to minimize the security risk
experienced by the end devices. We mathematically formulate
the security risk of the system in terms of the distance from
each device to the nearest deployed security function, which is
general enough to incorporate a wide range of risk measures in
practice; see Sec. III-B. A major challenge in the deployment
problem is the dynamic nature of IoT, where both infrastruc-
ture and demand fluctuations could happen frequently, such
as device mobility, maintenance, interference, failures, etc.
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To address this challenge, we propose a stochastic model to
capture the uncertainties caused by dynamics. Leveraging a
relevant concept in economics, our model can account for both
the expected and the worst-case risks of the system, which is
more robust than traditional stochastic models solely based on
expectations. We then propose a novel decomposition-based
framework, along with an efficiency-enhancement technique,
to achieve accurate and efficient optimization of system se-
curity risk in the dynamic IoT environment. We evaluated
our proposed model and optimization framework in extensive
simulation experiments, and the results have shown the superb
performance and efficiency of our proposed approach.

To summarize, our main contributions are as follows:

• To the best of our knowledge, we are the first to study,
quantitatively model, and optimize the security risk in fog
computing-based IoT security offloading. The problem is
of both theoretical and practical importance.

• We propose a stochastic model to account for both the ex-
pected and the worst-case security risks of the IoT system
with uncertainties, which is more robust than traditional
stochastic models solely based on expectations, and is
more suitable for security-related use cases.

• We propose a decomposition-based optimization frame-
work, along with an efficiency-enhancement method that
addresses the large overhead of stochastic programming.

• We conducted extensive simulations which show the
superb performance of our approach compared to several
other approaches.

II. BACKBROUND AND RELATED WORK

A. IoT Security Challenges and Approaches

IoT security has yet attracted a lot of attentions, at least not
until several recent attacks based on IoT devices [32]. It has
then been recognized that security breaches in IoT can be as
dominating and devastating as, if not more so than, any other
known type of security incidents. Since then, more efforts have
been put into addressing security challenges in IoT, which can
be viewed roughly in two perspectives.

The first perspective is on protecting the IoT devices.
The main challenge here is the limited resources on IoT
devices, including computing power, memory, power supply,
etc. Currently, there are two approaches to address the resource
issue. The first one is lightweight cryptography and security,
which aims to develop mechanisms that can provide good-
enough security on resource-constrained devices, such as [13],
[19]. Unfortunately, the current lightweight methods still can
only be deployed on devices like smartphones or tablets, but
can hardly be used on smaller devices like radio frequency
identification (RFID) tags, largely due to the stringent power
constraint on these devices [31]. Another approach is to
offload security mechanisms to other platforms, including in-
network fog nodes or the cloud [1], [6], [14], [34]. This ap-
proach addresses the overhead issue, but inevitably introduces
some risk associated with the transmission to the offloaded
security mechanisms, as detailed in the next section.

The second perspective is to protect the broader IoT
system rather than only the end devices. An IoT system
includes the end devices, network infrastructures in different

levels, applications and their hosting fog or cloud nodes, and
users of the IoT services. There are several challenges in
this perspective, including the huge number of IoT devices,
the heterogeneous and dynamic network environment, various
requirements and characteristics of applications, etc. The de
facto approach here is cloud-based security [27], which again
has several issues. The cloud is generally far away from the
IoT edge network, and hence is difficult to adapt to the fast
changing environment of IoT; it is also vulnerable to saturation
attacks like DDoS [30]. NFV [29] is a promising approach to
addressing this issue, by enabling implementation of security
mechanisms as in-network software components to resolve
threats before they reach the cloud, other devices or the users.

It can be seen that both perspectives call for deployment
of security mechanisms in the network. In both cases, security
can be largely guaranteed when traffic has passed certain
security functions, while the part of transmission before is
not protected/monitored. Therefore, what we address in this
paper is to minimize the risk associated with the transmission
before the security functions, by deploying these functions at
optimal locations. A recent survey on IoT security is in [36].

B. Risk Management in Network Security

Traditionally, network security is mainly a 0–1 problem: a
system is either secure or insecure. Recently, however, there
has been a transition to providing best-effort network security,
due to the enormous number and variety of attacks and the
impractical amount of resources to prevent them all. The goal
is either to make the difficulty or cost of launching an attack
unacceptable to the attackers, or to make the probability or
potential loss of undergoing an attack acceptable to the system.

Our work follows a number of existing works along the
second direction. A major series of works have focused on
modeling and optimizing network security risk using Attack
Graphs (AG) [2], [23], [28]. An AG is a graph representation
of all the possible attack paths into the system, and is used to
derive various security risk measures via Bayesian theory [23],
node ranking [28], or other mathematical tools [2]. The derived
measures are then used to guide the deployment of security
functions to harden the system [8], [22]. A main drawback of
the AG representation is its scalability. The size of the AG can
grow exponentially with the size of the network, and is further
increased if each node have multiple vulnerabilities. Hence it
is most suitable for simple and small-size environments like
home networks, but is hardly applicable to IoT networks with
even a few hundred devices. Furthermore, AG cannot handle
fast dynamics in the network: it needs to be modified each
time a new device joins or an old device leaves.

In face of these issues, some researchers have been seek-
ing for simpler and more practical security measures for
large-scale and dynamic environments like IoT. Rullo, Serra,
Bertino, and Lobo [26] have proposed a novel model for
security risk when monitoring geo-distributed IoT devices
in an area. They considered the robustness of the system
when facing dynamic user densities, an approach similar to
what we use to address demand and topology fluctuations in
the IoT network. In this paper, we propose a security risk
measure based on distances in the network, as well as an
efficient optimization framework to minimize the security risk
by flexibly deploying security functions on fog nodes.
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C. Other Related Areas

Mobile Offloading (MO): The idea of offloading dates back
to mobile cloud computing, where users offload their mobile
applications to the cloud [16]. Yet security offloading differs
from MO in two ways. First, MO is mostly ad hoc where each
user makes its own decisions; however, security offloading is
centrally controlled by the operator, who optimally coordinates
the offloading for all users. Second, MO does not consider the
network, since the destination is commonly the cloud. Security
offloading needs to consider the edge network topology, and
to minimize the risk associated with the offloading decisions.

NFV and Service Function Chaining (SFC): SFC is arisen
in the context of NFV. SFC considers the interplay between
different network services or security functions, modeling
them as a chain of virtual functions. Existing work has focused
on embedding service chains for each traffic flow [4], [17],
[25]. Unfortunately, this method is neither scalable for the
massive IoT devices, nor robust to the high dynamics. A good
method should account for both the expected scenarios, and
possible unfavorable scenarios due to system fluctuations.

Security with Robustness: Our work uses a stochastic ap-
proach to ensure system robustness. Similar methods have
also been used in other security scenarios [26], [33]. Another
potential approach is robust optimization, which deterministi-
cally optimizes the worst possible performance of the system,
such as [5]. This approach has two drawbacks. First, it is
hard to represent all unfavorable scenarios deterministically.
Second, it only plans for the worst possible performance of the
solution, which is commonly an overkill and wastes precious
resources. A good approach should be able to balance the
expected and worst-case performances, and give operator the
flexibility to specify the desired objective.

III. PROBLEM DESCRIPTION AND FORMULATION

A. System Model

The IoT network is modeled as a directed graph G =
(V,E). V is the set of network nodes, including access points
(APs), switches, routers, gateways, and various fog nodes. We
use F ✓ V to denote the set of fog nodes, each being able to
host security functions. E is the set of links between nodes.

The IoT faces two types of uncertainties. The first one
is demand uncertainty, which comes from dynamics such as
device deployment, maintenance, user load variation, device
and user mobility, etc. Let A ✓ V be the set of APs of the IoT.
To model demand uncertainty, each AP a 2 A is associated
with a random variable da 2 R⇤ (R⇤ is the non-negative real
number set), denoting the amount of demand at a. We use
D = {da | a 2 A} to denote the demand uncertainty set, and
dsum =

P
a2A da to denote the total demand in the IoT. In

practice, the demand can refer to (but is not limited to) the
number of devices, number of flows, traffic volumes, etc.

The second type is topology uncertainty due to unexpected
failures, maintenance, interference, etc. To model it, we asso-
ciate each link e 2 E also with a random variable ye 2 {0, 1},
where ye = 1 means e is operational, and ye = 0 means e is
down. This model is also able to account for node dynamics:
if a node fails, all its adjacent links have ye = 0. We use
Y = {ye | e 2 E} to denote the topology uncertainty set.

Let D={da} and Y ={ye} be a specific realization of the
demand and topology uncertainty sets, respectively. We define
a realization of the system (called a scenario) as ⇧=(D,Y ).

B. Threat Model and Defense Mechanism

In an IoT network with security offloading, data is first
transmitted from IoT device to the offloaded security function
before heading to its final destination. Below, we analyze the
threat associated with such transmission in several scenarios:

• Highly constrained devices: these devices cannot run any
cryptographic procedure, hence offload all procedures to
the network. All transmitted data is unprotected before
passing the security functions, which is subject to leak-
age, manipulation, injection and other types of attacks.

• Moderately constrained devices: these devices can run
lightweight cryptographic procedures such as secure
computation outsourcing [6], [14], which only offloads
computation-intensive operations but keeps the data pri-
vate. Yet in this case, the data stays unprotected in device
memory until encryption is complete, during which it can
be compromised by opportunistic attacks leveraging vul-
nerabilities of the devices themselves, such as the recent
Meltdown and Spectre hardware attacks [12]. Probability
of an attack is determined by the latency between device
and the offloaded location, as the process can involve
multiple rounds of back-and-force messaging [14].

• IoT network: the operator may deploy security functions
(e.g., intrusion detection, firewall, deep packet inspection)
to protect the system from malicious/compromised de-
vices. However, traffic not processed by certain security
functions can be a threat to the network. For example, a
DDoS attack may still overwhelm some of the nodes be-
fore being tackled by a detection and resolution function.

It can be seen that in these various scenarios, it is essential
that the operator can flexibly deploy security functions to
minimize the threats brought by the unprotected/unmonitored
transmission of offloading. Unfortunately, the operator may
have a tight budget for deploying the functions. We next define
the operator’s deployment plan to optimize such threats.

We consider the deployment of a single type of security
function to prevent a specific type of attacks. Formally, we use
binary variable set X = {xv | v 2F} to denote a deployment
plan, where xv =1 means a security function is deployed at
node v and 0 otherwise. Let cv 2 R+ be the deployment cost
at node v 2 F . A deployment plan is said to be feasible, iff
it satisfies the operator’s budget b:X

v2F
cvxv  b. (1)

Definition 1 (Security risk). Given network G = (V,E), the
security risk of a deployment plan X is the average distance
that a unit of demand has to traverse before reaching the
nearest security function from its AP, denoted as R(X,D, Y ).
In other words, the security risk is a function of the deployment
plan X and the uncertainty sets D and Y .

In Definition 1, the distance is a cumulative measure that
can be selected based on different use cases. For instance,
it can be as simple as the number of hops (vulnerable links
or nodes) or transmission latency (time window of possible
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attacks), or as complex as the negative logarithm of the “safe”
probability of traversed links or nodes (the “safe” probability
is one minus the probability that a node/link/path is attacked;
it is cumulated multiplicatively along the transmission path
but is to be maximized instead of minimized). We do not
assume a specific distance measure for sake of generality.
We focus on the average distance of demands for ease of
illustration, although our approach can be trivially extended
to minimizing the maximum distance of demands. Note that
the average distance is the average over demands from all APs
in a fixed scenario, rather than over all possible scenarios of
the system. For measurement over scenarios, we use both the
expectation and a worst case-oriented metric, as detailed next.

C. Measuring Security Risk with Uncertainty

Given a fixed scenario ⇧, measuring the security risk of de-
ployment plan X is as simple as finding shortest paths between
AP-fog node pairs; minimizing it with flexible deployment
plans, though, is NP-hard due to a reduction from the facility
location problem [11]. Furthermore, the IoT environment is
rather volatile, with uncertainties in both the demands and
the topology. One approach is to measure and minimize the
expected risk, which reflects the average level of threat of the
system. However, such an approach is not robust enough when
applied in security, as the system may experience arbitrarily
high security risk in unfortunate scenarios.

To account for the worst-case performance, we adopt the
concept of Conditional Value-at-Risk (CVaR), a risk measure
widely used in economics and finance. The concept has been
applied in several security-related use cases [26], [33]. Here
“risk” refers to the investment risk an investor encounters
when facing market variations, i.e., potential loss due to
unfavorable market trends. Formally, let random variable R
be the loss of an investment. The following terms are defined:

VaR↵(R) = min{c |P (R  c) � ↵}, (2)
CVaR↵(R) = E[R |R � VaR↵(R)]. (3)

Here E[·] is the expected value of a random variable. VaR↵(R)
(Value-at-Risk, also called ↵-VaR) is the minimum value such
that the actual loss will not exceed it with ↵ confidence, while
CVaR↵(R) (also called ↵-CVaR) is the expected loss of all
scenarios where the loss can actually exceed VaR↵(R). In
other words, CVaR↵(R) denotes the expected loss of the worst
(1� ↵) percent scenarios in terms of investment loss.

Given uncertainty sets D and Y , R(X,D, Y ) is the
security risk of deployment plan X , which is also a random
variable. We use R to denote R(X,D, Y ) if no ambiguity is
introduced. Next, we formally model and minimize the secu-
rity risk of security offloading, utilizing the CVaR definition.

IV. SECURITY DEPLOYMENT WITH UNCERTAINTY

A. Problem Description and Formulation

Given the network and a limited budget, the IoT operator
wants to ensure system security to the best extent. This
includes both the overall system security in expectation, as
well as the potential security risk in the (1�↵) percent most
unfavorable scenarios. We model these two goals as a multi-
objective optimization problem as follows:

min
X2X

E[R], CVaR↵(R), (4)

where X is the feasible deployment plan set satisfying Eq. (1).

Optimizing two objectives can be hard, as they may con-
flict with each other in their own optimality points respectively.
A common technique is to scalarize the multiple objective
functions into a single objective function. We scalarize Pro-
gram (4) as the following single-objective program:

min
X2X

E[R] + ⇢ · CVaR↵(R). (5)

where ⇢ is a chosen balancing parameter.

In Eq. (3), the formulation of ↵-CVaR requires the com-
putation of ↵-VaR beforehand, which is hard to incorporate
in the above program. Fortunately, Rockafellar and Uryasev
proved in [24] that the ↵-CVaR can be computed as follows
without knowing the ↵-VaR beforehand:

CVaR↵(R) = min
c2R

⇢
c+

1

1� ↵E
⇥
(R� c)+

⇤�
, (6)

where R is the real number set, and (z)+ = max{z, 0}.
Therefore, Program (5) can be re-written, by incorporating
Eq. (6), as the following program:

min
X2X
c2R

E[R] + ⇢

✓
c+

1

1� ↵E
⇥
(R� c)+

⇤◆
. (7)

The random variable R is a function of the deployment plan
X and random variable sets D and Y . Unfortunately, writing
it as a closed-form equation is also a difficult task. Instead,
we formulate it as the following program:
R(X,D, Y ) =

min
t

1

dsum

X

a2A

da
X

v2F

dista(v)ta(v) (8a)

s.t.
X

v

ta(v) = 1, 8a; (8b)

ta(v)  xv, 8a, v; (8c)
ta(v) 2 [0, 1], 8a, v. (8d)

In Program (8), dista(v) is a random variable, denoting
the distance between AP a and node v. It is determined
by the distance metric used (number of hops, latency, safe
probability, etc.), as well as the topology uncertainty set Y .
Objective (8a) is to minimize the demand-weighted average
security risk (distance) of all APs. Constraint (8b) bounds
the node selection variable ta(v). Constraint (8c) defines the
relationship between the deployment variable xv and the node
selection variable ta(v). Note that ta(v), which can be viewed
as the probability of selecting v for AP a, is a continuous
variable in [0, 1]; its upper bound 1 is explicitly expressed
in (8d) for clarity, but can be omitted due to Constraint (8b)
when solving the program. If multiple nodes have the same
minimum distance from a, the node selection can be arbitrarily
split among them without affecting the objective value.

B. Scenario-based Stochastic Optimization

Program (7) is a stochastic optimization problem. Even
with the characteristic functions of D and Y , the problem
is still hard to solve since R(X,D, Y ) cannot be written in
a closed form (and is not even convex as Y is discrete). A
common approach is to approximate the expectations using
sampling. Specifically, N sample scenarios are obtained from
the underlying distributions of D and Y , denoted as ⇧ =
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{⇧1, . . . ,⇧N}. Let Ri
�
= R(X,D

i
, Y

i
) be the security risk

in scenario ⇧i, which can still be expressed by Program (8)
with the random variables replaced by the deterministic values
in ⇧i. The expected security risk E[R] is then approximated by
the sample average function 1

N

PN
i=1 Ri, while the ↵-CVaR

is approximated by min
c2R

n
c+ 1

1�↵
1
N

PN
i=1(Ri � c)+

o
.

Program (7) is then approximated by the following:

min
X2X
c2R

1

N

NX

i=1

Ri + ⇢

 
c+

1

1� ↵
1

N

NX

i=1

�
Ri � c

�+
!
. (9)

We next re-write Program (9) to resolve (·)+, Ri and X .
To resolve (·)+, we introduce additional variable zi 2 R⇤ for
i = 1 . . . N , and constrain the inner term of (·)+ using zi.
To resolve Ri, note that both Program (8) and Program (9)
are minimization programs, and hence can be merged. X is
resolved by bringing Eq. (1) into the program. We then arrive
at the following Mixed Integer Linear Program (MILP):

min
1

N

NX

i=1

1

d
i
sum

X

a2A

d
i
a

X

v2F

distia(v)t
i
a(v)+

⇢

 
c+

1

1� ↵
1

N

NX

i=1

zi

!
(10a)

s.t.
1

d
i
sum

X

a2A

d
i
a

X

v2F

distia(v)t
i
a(v)� c  zi, 8i; (10b)

X

v

tia(v) = 1, 8i, a; (10c)

tia(v)  xv, 8i, a, v; (10d)
X

v2F

cvxv  b; (10e)

xv2{0, 1}, tia(v)2 [0, 1], zi�0, c2R, 8i, a, v. (10f)
In Program (10), note that the random variable distances
dista(v) are also instantiated by the deterministic distances
distia(v), which can be computed beforehand for all scenarios.
There may be scenarios where an AP cannot reach all the fog
nodes due to disconnectivity. In this case, we set the distance
to the disconnected nodes to a large value, in order to prefer
security function deployment at other fog nodes instead.

Program (10) can be solved using optimization solvers
such as Gurobi [10]. Yet, there are two reasons that Pro-
gram (10) is extremely hard to solve in practice. First, the
program is non-convex due to integer variables xv . Second,
the program size is linear to N . To get a good approximation
of the distributions of D and Y , the number of samples
needed is commonly at least thousands. An MILP of such
size is largely unsolvable in practice. Therefore, we resort to
some optimization techniques, which can drastically reduce
the complexity of solving Program (10) to a practical level.

C. Two-stage Optimization with Benders’ Decomposition

At a closer look, Program (10) can be viewed as a typical
two-stage optimization problem, with a small number of
master variables but a huge number of slave variables. In
the first stage, the program seeks to fix deployment plan X ,
which is called the master problem. In the second stage, given
fixed deployment plan, it then computes the security risk of

all scenarios by selecting the optimal fog nodes that actually
deploy the security functions; this stage is called the slave
problem. A difficulty in solving a two-stage program is that
when fixing the first-stage master solution, there is no clue on
how such decisions will affect the second-stage slave solution,
until the slave problem is actually solved. A natural choice is
thus an iterative algorithm that progressively solves both the
master and the slave, until an optimal solution is found. In this
subsection, we apply a well-known algorithm of such kind: the
Benders’ decomposition due to Benders [3].

Formally, Program (10) can be re-written as follows:
min
X,c

⇢ · c+Q(X, c) (11a)

s.t. (10e),
xv 2 {0, 1}, c 2 R, 8v. (11b)

where the slave problem Q(X, c) is given by
Q(X, c) =

min
z,t

1

N

NX

i=1

 
1

d
i
sum

X

a2A

d
i
a

X

v2F

distia(v)t
i
a(v) +

⇢

1� ↵zi

!

(12a)
s.t (10b), (10c), (10d),

tia(v) 2 [0, 1], zi � 0, 8i, a, v. (12b)

An intriguing property of the slave is that it is further
decomposable regarding each scenario ⇧i, as there are no
coupling variables or constraints over i. Hence the slave
problem can also be written as Q(X, c) = 1

N

PN
i=1 Qi(X, c),

where Qi(X, c) is the slave subproblem for each scenario ⇧i,
defined by the inner term of the objective function and all the
constraints for the specific i in Program (12).

To employ Benders’ decomposition, we further need to
study the dual program of Qi(X, c), defined as follows:
�i(x, c) =

max
�,�,µ

X

a2A

 
�i(a)�

X

v2F

xvµi(a, v)

!
� c · �i (13a)

s.t. �i 
⇢

1� ↵ ; (13b)

�i(a)�µi(a, v)
d
i
adistia(v)

d
i
sum

(1 + �i), 8a, v; (13c)

�i, µi(a, v) � 0,�i(a) unbounded, 8a, v. (13d)
In Program (13), dual variables �, � and µ correspond to
primal constraints (10b), (10c) and (10d), respectively.

Given the above, the key idea of Benders’ decomposi-
tion is to, instead of considering all constraints as a whole,
progressively add constraints (also called cuts) that may help
in approaching the optimal solution in an iterative manner,
thus avoiding to consider the large number of constraints
together. The algorithm starts with a feasible master solution
(e.g., with all xv = 0 and c = 0 in our problem), a pair
of lower and upper bounds LB = �1 and UB = 1, and
the master problem that contains only the master constraints
(in our case, Constraint (10e) is the only master constraint).
In each iteration, the algorithm first solves the dual slave
problem given the current master solution. It then updates
the master problem by adding cuts based on the dual slave
problem solution. The updated master problem is then solved
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to optimality to obtain a new master solution. Note that
although the master problem is still an MILP, it has a much
smaller size compared to the original, and hence can be
efficiently solved using a standard solver. The LB and UB are
updated based on the master and slave solutions, respectively.
The whole algorithm is shown in Algorithm 1.

Algorithm 1: Benders’ Decomposition for Program (10)
Input: Network G, scenarios ⇧, quantile ↵, tolerance ✏
Output: Deployment plan X

1 X  {xv = 0| v 2 F}, c 0, LB �1, UB 1;
2 while UB� LB > ✏ do

3 Solve dual slave problem �i(x, c) for 8⇧i;
4 if �i(x, c) is unbounded then

5 Get unbounded ray (�̃, �̃, µ̃);
6 Add feasibility cut to the master problem:

NP
i=1

✓P
a2A

✓
�̃i(a)�

P
v2F

xvµ̃i(a, v)

◆
�c�̃i

◆
0;

7 else

8 Get optimal point (�⇤,�⇤, µ⇤);
9 UB min{UB,�(x, c)};

10 Add optimality cut to the master problem:

��
NP
i=1

✓P
a2A

✓
�⇤i (a)�

P
v2F

xvµ⇤
i (a, v)

◆
�c�⇤i

◆
;

11 Solve master problem min{� + ⇢ · c | cuts, x 2 X};
12 LB � + ⇢ · c;
13 return X.

In the algorithm, an unbounded ray (�̃, �̃, µ̃) in Line 5 is
essentially a direction (in other words, a solution vector) to
which the dual objective value goes to infinity. If the dual slave
problem is unbounded, the primal slave problem is infeasible,
and hence a feasibility cut is added in Line 6 to drive the
master problem back into the feasible domain. If the dual slave
has an optimal solution, the optimal dual point is incorporated
into the master by adding an optimality cut, which drives the
algorithm to search for master solutions with higher objective
values. By adding cuts progressively, the algorithm avoids
considering all the slave constraints together, but instead only
considers those “promising” constraints that are likely to be
active in the optimal solution. This can drastically reduce the
overhead, especially for scenario-based optimization where a
huge number of scenarios are considered. The UB is updated
as the best feasible solution ever found, while the LB is
updated when a new master solution is obtained. Optimality
can be claimed when LB and UB converge.

D. Speeding-up Per-iteration Optimization

Even with the decomposition technique, Algorithm 1 is
not efficient enough. The main reason is that it needs to solve
a large number of dual slave linear programs (LPs) in each
iteration, which is a slow process due to the cubical complexity
for solving LPs [35]. In this subsection, we revisit the dual
slave subproblems �i(x, c) in (13), and show that they can
be solved analytically due to their special structure.

Without loss of generality, we assume that the dual slave
problem is feasible and bounded, i.e., the corresponding primal
slave problem is also feasible and bounded. Note that the
primal problem is infeasible (hence the dual is unbounded)

only when some AP is disconnected from any fog node in a
certain scenario, which can be detected in the shortest path
pre-computation phase. In the disconnected case, the security
risk is ill-defined, as the AP cannot even communicate with the
Internet. To tackle this, one way is to simply assign a uniform
distance for all fog nodes, meaning that in this scenario it has
no effect on the node selection. The primal problem cannot
be unbounded (security risk is lower bounded by 0).

For scenario ⇧i and AP a, let via[1] and via[2] be the two
fog nodes with xv = 1 and with the minimum distances from
a, and let distia[1] and distia[2] be the corresponding distances
respectively (with distia[1]  distia[2]). Also let �ia = d

i
a/d

i
sum.

We then have the following optimal solution:

�i=

8
<

:

⇢

1� ↵ if
P
a
�iadistia[1] � c

0 otherwise
(14a)

�i(a)=�
i
adistia[2](1 + �i) (14b)

µi(a, v)=

8
<

:
�ia(distia[2]�distia(v))(1+�i)

if v = via[1]
or xv = 0

0 otherwise
(14c)

The following theorem states the optimality of the above
solution, whose proof is delegated to the appendix.

Theorem 1. If the dual slave problem has bounded optimal
value, Eq. (14) is an optimal solution to Program (13), and
can be computed in linear time.

V. PERFORMANCE EVALUATION

A. CVaR vs. Expectation

In this subsection, we show simulation results on com-
paring the expected case and the worst case up to a small tail
probability. Our topology is in Fig. 1(a), which is based on the
IoT framework in [21]. The topology had four types of nodes
representing different street blocks: residential (R), work (W),
business (B) and entertainment (E). Each node was both an
AP and a fog node with uniform cost. The operator had a
30% budget over the sum of fog node costs. The scenarios
were generated from a 3-month time period sliced into 15-
minute intervals. Each link had an independent reliability of
99%. Depending on time and day of week, demand at each
node was drawn from a Gamma distribution �(a, b) where a
is the shape and b is the scale, as shown in Table I.

Mon. – Fri. Sat. & Sun. Other (Sleep)
8am–6pm 12pm–6pm 6pm–10pm

R �(0.5, 1.5) �(0.5, 1.5) �(0.5, 0.5) �(0.5, 3.0)
W �(0.5, 2.0) �(0.5, 0.2) �(0.5, 0.2) �(0.5, 0.8)
B �(0.5, 0.5) �(0.5, 2.0) �(0.5, 1.0) �(0.5, 0.3)
E �(0.5, 0.2) �(0.5, 0.5) �(0.5, 2.5) �(0.5, 0.1)

TABLE I: Probability Distribution of Demands
We compared between using Algorithm 1 with a large

enough ⇢ value (where only CVaR is considered) and with
⇢ = 0 (where only the expectation of risk is considered). We
varied the quantile ↵ to see the CVaR of different confidence
levels. For example, a large quantile ↵ = 99% means we only
look at the 1% most unfavorable scenarios, while ↵ = 0%
means that we are looking at all the scenarios in CVaR, which
by definition is equivalent to the expectation itself. To solve
the MILP master problem, we used the Gurobi solver [10].
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(a) Simulation topology

(b) CVaR and expectation with ⇢ = 100k (min CVaR) and
⇢ = 0 (min expectation) respectively

Fig. 1: Simulation on designated topology.

Fig. 1(b) shows the optimal solutions (with error tolerance
of ✏ = 10�5, same hereinafter) obtained by Benders’ decom-
position. The quantile (1 � ↵) is the percentage of scenarios
included in the computation of CVaR. We can see that optimiz-
ing CVaR and optimizing expectation indeed achieves different
solutions in most of the cases. With increase in (1�↵), more
scenarios are included in the CVaR, hence the CVaR value
approaches the mean. However, with (1 � ↵) = 1%, there
is a great difference in minimizing CVaR (⇢ = 100k) and
minimizing expectation (⇢ = 0), where the CVaR of security
risk can be almost 1.5⇥ larger in the latter case than in the
former. This suggests that in security systems where a few
worst cases need to be carefully tackled, it is important to
apply CVaR-aware optimization to account for the worst-case
performance rather than for the average case alone.

B. Optimality and Efficiency

Next, we used randomly generated network to show how
our proposed algorithm was able to achieve vast speed-up
compared to the brute-force approach. Each topology had
30 nodes, and was generated using the Waxman model [9]
with parameters ↵ = � = 0.3. We randomly picked half of
the nodes to be APs, and  of the nodes to be fog nodes
where  2 [0, 1] is the fog node ratio. Deployment costs were
generated uniformly from [10, 100], while the operator had a
budget of 50% of the sum of costs. In total 10k scenarios
where generated for each experiment. Link reliability was
uniformly 99%. The demands at APs were generated from
an Erlang(1, 2) distribution. We set quantile ↵ = 95%. To
average out noise of topology randomization, we generated
20 different topologies for each experiment setting, and took
the average over all runs. Simulations were conducted on a
Linux PC with 3.4GHz Quad-Core CPU and 16GB memory.

Fig. 2 shows the results of our algorithm over a brute-
force algorithm. BENS is our proposed algorithm with our
analytical model, while BENS-LP is our proposed algorithm

with dual slave LPs solved by the Gurobi solver [10]. Brute-
force algorithm ITER iterates over all possible deployment
plans X 2 X , and returns the best solution found after all
iterations or after a running time limit of 1800 seconds; ITER
returns the optimal solution unless exceeding the time limit.
Fig. 2(a) shows the optimality of our algorithm. Note that
when the fog node ratio exceeds 0.7, ITER could not iterate
over all possible solutions in the time limit, and hence returns
suboptimal solutions. Fig. 2(b) shows the overall running
times. Our BENS algorithm is the fastest in most cases. ITER
is faster than BENS when the fog nodes are few, but then
its time grows and quickly tops-up the pre-set time limit of
1800 seconds, due to the exponential increase in the solution
space. Comparing BENS and BENS-LP, the former achieves a
drastic speed-up. We further plot the average master and slave
solving times per iteration in Figs. 2(c) and 2(d), respectively.
It can be seen that BENS and BENS-LP do not differ much
in master solving time. However, BENS achieves several
orders of speed-up in slave solving time, further validating the
effectiveness of our analytical model. Finally, an interesting
finding is that, although the master problem is an MILP, it
actually solves faster than the slave problem, due to its small
size compared to the large number of scenarios.

C. Comparison with Fast Baseline Heuristics

In the last set of experiments, we show the performance of
our algorithm compared to fast heuristics. For this comparison,
we used a synthesized dataset derived from real IoT device
traces collected in the Dartmouth College [15]. The original
dataset contained the location data of over 600 APs and
the connectivity data of over 13000 user devices for more
than 5 years. We synthesized the dataset as follows. First,
we aggregated APs based on buildings, and regarded each
building as a single AP. Second, we further divided buildings
into street blocks based on a publicly available map of the
campus. Due to lack of campus network topology, we adopted
a topology where each building’s AP is directly connected to a
central node within each block, and all blocks are connected in
a ring topology. All block nodes and 10% of the buildings were
selected as fog nodes, with deployment costs of 100 and 10,
respectively. Finally, since the entire data set contains many
intervals that have unstable and erroneous measurements, we
only used a one-year subset of data (09/2002–08/2003) that is
relatively stable according to the collectors [15].

To characterize the demand distribution, we regarded the
user connectivity data as samples from the underlying realistic
distribution. We used 4 months of data (09/2002–12/2002) as
training set, and the next 8 months of data (01/2003–08/2003)
as the test set, both sliced into intervals of 15-minute length.
We used the training data to deploy the security functions,
and then calculated the security risks of the deployed security
functions on both the training set and the test set. The number
of devices were aggregated and averaged over every 15-minute
interval for each building AP. All links had 99% reliability.
We again set ⇢ to a large value, and let ↵ = 95%.

Fig. 3 shows the training and testing security risks using
the synthesized data. We compared our proposed algorithm
to two heuristics: RNDA and GRDY. RNDA is a random
algorithm which randomly picks fog nodes to deploy the
security function, until the budget is exceeded. GRDY is a

7



(a) CVaR vs. fog nodes (b) Running time vs. fog nodes (c) Master time vs. fog nodes (d) Slave time vs. fog nodes

Fig. 2: Simulation results with varying number of fog nodes over total nodes. ITER (optimal algorithm) exceeds the time limit
(1800 s) when the fog node ratio is 0.7, and hence is terminated before finishing all iterations.

(a) Training set performance (b) Test set performance

Fig. 3: CVaR of risk on synthesized Dartmouth data.

greedy algorithm which iteratively selects fog nodes that result
in the maximum reduction in the objective function, until the
budget is exceeded. From the figure, we can see that our
algorithm outperforms both GRDY and RNDA. The greedy
heuristic generally achieves better performance than RNDA,
but may result in poor performance with certain budget values
such as a budget of 200. Also, it is interesting to see that an
optimal training solution may not be optimal on the test set.
For example, when the budget increases from 275 to 300,
the training CVaR of BENS (the optimal) decreases, but the
test CVaR increases. This is commonly due to changes in the
underlying distribution, and should be tackled by periodically
re-optimizing the deployment decisions based on new inputs.

VI. DISCUSSIONS AND FUTURE WORK

Advanced deployment and risk measurement: Our current
distance-based risk measure can be extended to more complex
cases. For example, each link may have a routing capacity
and each security function may have a processing capacity
in practice. In this case, demands may be split over multiple
paths and/or security functions if some are overloaded. Also,
different links and/or nodes may have different contributions to
the security risks, as some may be more vulnerable to others.
These considerations can mostly be integrated with minimal
modifications into our CVaR-based and scenario-based optimi-
zation framework. Derivation of efficient solutions in these
more complex cases is delegated to our future work.

Further optimization speed-ups: The proposed algorithm
mainly uses the basic Benders’ decomposition algorithm, with
the only enhancement being the problem-specific analytical
model for solving the dual slave problem. There are other
techniques that are also promising in improving the efficiency
of Benders’ decomposition, such as enhanced cuts [7], the
three-phase method [7], trust regions [18], etc. While these
techniques can hardly beat the speed-up achieved by our
analytical model (and most of them are not trivially compat-

ible with our analytical model), they are helpful in general
when our model and framework are extended to other more
complex cases as aforementioned. An orthogonal technique is
to employ parallelization in each iteration, which is natural
through the dual slave decomposition in our algorithm.

VII. CONCLUSIONS

In this paper, we investigated the security risk associated
with offloading security mechanisms from IoT end devices to
fog or cloud computing nodes in the network. To maximize
system security and robustness, the operator would want to
deploy in-network security functions to minimize the security
risk of all users, given various scenarios including varying user
demands and infrastructure instability. We made the following
contributions. First, we proposed a stochastic model for uncer-
tainties in an IoT system. Second, we used an economic model
(CVaR) to capture the worst-case security risk of the system, in
addition to the conventional expectation-based model. Third,
we developed a decomposition-based optimization framework
for optimizing both the expected security risk and the its CVaR
in scenario-based stochastic programming. We then enhanced
the framework with an analytical model tailored to drastically
reduce its optimization overhead. Finally, we showed, through
simulations, that the proposed model well captures system
security risk up to a small tail probability, and that the
proposed framework achieves optimal security deployment
with limited overhead compared to other algorithms.
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APPENDIX

Proof of Theorem 1: For simplicity, we omit subscript
i, since the dual slave subproblem is independent for each
scenario. We call a node active if it has xv = 1 in the current
iteration, otherwise it is inactive. First, for any inactive node
v, we can assume that µ(a, v) takes an arbitrarily large value
to enforce Constraint (13c), as it has a zero coefficient in
the objective function. For each AP a, a node v can have a
positive µ(a, v) only when the corresponding Constraint (13c)
is binding, i.e., equality holds instead of inequality at any
optimal point, for this node; otherwise, the objective value can
be solely increased by decreasing µ(a, v) without violating
Constraint (13c). We claim that there is at most one active
node v with positive µ(a, v); if multiple active nodes have
positive µ(a, v), then we can reduce �(a) along with all the
positive µ(a, v)s by a small amount, reducing objective value
without violating Constraint (13c) for any node. Further, we
claim that the node with positive µ(a, v) must be the one and
only one active node v⇤ who has the minimum distance from
a; if more than one node has the same minimum distance,
they must all have µ(a, v) = 0. Otherwise, say if an active
node v0 with non-minimum distance has a positive µ(a, v0)
and the corresponding Constraint (13c) is binding, then clearly
µ(a, v⇤) > µ(a, v0) > 0, because dista(v⇤) < dista)(v0). Then
we have two positive µ(a, v) values, which conflicts with
the above. In the case of a single minimum-distance active
node v⇤ = via[1], both �(a) and µ(a, v⇤) can take positive
values up to the values specified in Eq. (14), without violating
Constraint (13c) for the second minimum-distance node, via[2].
We pick the upper bounds to motivate the master problem to
search for new solutions in each iteration.

Now, for the inactive nodes, though they can take arbitrar-
ily large values, we pick their lower bounds, such that reducing
any µ value in this class will lead to constraint violation. This
gives Eq. (14) for xv = 0. This choice is for simplicity of the
equation, but can also help in numerical stability in practice.

Based on the above, we know that in the optimal solution,
the first term of the objective function is always equal to ⇠(1+
�) where ⇠ =

P
a �adista[1]. Then, it is clear that the � value

is based on the comparison between ⇠ and c. If ⇠ � c, we set
� to the maximum value ⇢

1�↵ as bounded by Constraint (13b);
otherwise, we set � to 0. This completes the proof.
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